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ABSTRACT

Recent studies have shown great promise in unsupervised represen-

tation learning (URL) for multivariate time series, because URL has

the capability in learning generalizable representation for many

downstream tasks without using inaccessible labels. However, ex-

isting approaches usually adopt the models originally designed for

other domains (e.g., computer vision) to encode the time series data

and rely on strong assumptions to design learning objectives, which

limits their ability to perform well. To deal with these problems,

we propose a novel URL framework for multivariate time series by

learning time-series-specific shapelet-based representation through

a popular contrasting learning paradigm. To the best of our knowl-

edge, this is the first work that explores the shapelet-based embed-

ding in the unsupervised general-purpose representation learning.

A unified shapelet-based encoder and a novel learning objective

with multi-grained contrasting andmulti-scale alignment are partic-

ularly designed to achieve our goal, and a data augmentation library

is employed to improve the generalization. We conduct extensive

experiments using tens of real-world datasets to assess the represen-

tation quality on many downstream tasks, including classification,

clustering, and anomaly detection. The results demonstrate the su-

periority of our method against not only URL competitors, but also

techniques specially designed for downstream tasks. Our code has

been made publicly available at https://github.com/real2fish/CSL.
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1 INTRODUCTION

Multivariate time series (MTS) generally describes a group of de-

pendent variables evolving over time, each of which represents a

monitoring metric (e.g., temperature or CPU utilization) of an entity

(e.g., system or service). MTS data play a vital role in many practical

scenarios, such as manufacturing, medicine, and finance [4, 24, 42].

While MTS are being increasingly collected from various applica-

tions, a particular challenge in modeling them is the lack of labels.

Unlike images or text that usually contain human-recognizable

patterns, label acquisition for time series is much more difficult,

because the underlying state of these time-evolving signals can

be too complicated even for the domain specialists [46]. For this

reason, it has recently become a research focus to explore unsu-

pervised (a.k.a. self-supervised) representation learning (URL) for

MTS [10, 56, 59, 60]. URL aims to train a neural network (called

encoder) without accessing the labels to embed the data into feature

vectors, by using carefully designed learning objectives to leverage

the inherent structure of the raw data. The learned representations

(a.k.a. features or embeddings) can then be used for training models

to solve a downstream analysis task using little annotated data com-

pared to the traditional supervised methods [60]. And the features

are more general-purpose since they can facilitate to several tasks.

Unfortunately, unlike in domains such as computer vision (CV)[8,

27, 29] or natural language processing (NLP) [12, 65], URL in the

context of time series is still under-explored. MTS are typically

continuous-valued data with high noise, diverse temporal patterns

and varying semantic meanings, etc [3]. These unique complexi-

ties make advanced URL methods in the aforementioned domains

difficult to perform well [10, 46]. Although several studies have

attempted to fill this gap by considering the characteristics of time

series, such as the time-evolving nature [46] and the multi-scale

semantics [11, 59], existing approaches can still be weak in learning

well-performed representations partly due to the following reasons.

First, the existing representation encoder designs are highly in-

spired by experiences in CV and NLP domains, which may not

be well-suited for MTS. Specifically, convolutional neural network

(CNN) [16, 49] and Transformer [51] are commonly-used encoders

in recent studies [10, 11, 46, 56, 59, 60]. However, the encoders still

face many difficulties when applying in MTS due to the lack of

capability to deal with the characteristics of time series [32, 45, 66].

386

https://www.acm.org/publications/policies/artifact-review-and-badging-current


Second, some existing approaches rely on domain-specific assump-

tions, such as the neighbor similarity [11, 46] and the contextual

consistency [59], thus are difficult to generalize to various scenarios.

For instance, Franceschi et al. [11] and Tonekaboni et al. [46] as-

sume that subsequences distant in time should be dissimilar, which

can be easily violated in periodic time series [43].

To tackle the issues mentioned above, we explore the time-

series-specific representation encoder without strong assumptions

for URL. In particular, we consider the encoder based on a non-

parametric time series analysis concept named shapelet [58], i.e.

salient subsequence which is tailored to extract time series features

from only important time windows to avoid the noises outside. The

main reason is that the shapelet-based representation has shown su-

perior performance in specific tasks such as classification [25, 33, 54]

and clustering [61]. Besides, compared to the feature extracted from

other neural networks such as CNN, the shapelet-based feature can

be more intuitive to understand [58]. However, it has never been

explored in the recently rising topic of URL for general-purpose

representation. To fill this gap, we take the first step and propose

to learn shapelet-based encoder employing contrastive learning, a

popular paradigm that has shown success in URL [8, 10, 59, 64].

We highlight three challenges in learning high-quality and general-

purpose shapelet-based representation. The first is how to design a

shapelet-based encoder to capture diverse temporal patterns of

various time ranges, considering that it is originally proposed to

represent only a single shape feature, and exhaustive search or prior

knowledge is needed to determine the encoding scale [5, 25, 61].

The second is how to design a URL objective to learn general infor-

mation for downstream tasks through this shapelet-based encoder,

which has never been studied. Last, while contrastive learning

leverages the representation similarity of the augmentations of one

sample [8] to learn the encoder, it remains an open problem to

properly augment the time series to keep the similarity [46, 59].

To cope with these challenges, we propose a novel unsuper-

vised MTS representation learning framework named Contrastive

Shapelet Learning (CSL). Specifically, we design a unified archi-

tecture that uses multiple shapelets with various (dis)similarity

measures and lengths to jointly encode a sample, such that to cap-

ture diverse temporal patterns from short to long term. As shapelets

of different lengths can separately embed one sample into different

representation spaces that are complementary with each other, we

propose a multi-grained contrasting objective to simultaneously

consider the joint embedding and the representations at each time

scale. In parallel, we design a multi-scale alignment loss to encour-

age the representations of different scales to achieve consensus.

The basic idea is to automatically capture the varying semantics

by leveraging the intra-scale and inter-scale dependencies of the

shapelet-based embedding. Besides, we develop an augmentation

library using diverse types of data augmentation methods to further

improve the representation quality. To the best of our knowledge,

CSL is the first general-purpose URL framework based on shapelets.

The main contributions are summarized as follows:

• This paper studies how to improve the URL performance using

time-series-specific shapelet-based representation, which has

achieved success in specific tasks but has never been explored

for the general-purpose URL.

• A novel framework is proposed that adopts contrastive learn-

ing to learn shapelet-based representations. A unified shapelet-

based encoder architecture and a learning objective withmulti-

grained contrasting and multi-scale alignment are particularly

designed to capture diverse patterns in various time ranges. A

library containing various types of data augmentation meth-

ods is constructed to improve the representation quality.

• Experiments on tens of real-world datasets from various do-

mains show that i) our learned representations are general

to many downstream tasks, such as classification, clustering,

and anomaly detection; ii) the proposed method outperforms

existing URL competitors and can be comparable to (even bet-

ter than) tailored techniques for classification and clustering.

Additionally, we study the effectiveness of the key compo-

nents proposed in CSL and the model sensitivity to the key

parameters, demonstrate the superiority of CSL against the

fully-supervised competitors on partially labeled data, and ex-

plain the shapelets learned by CSL. We also study our method

in long time series representation and assess its running time.

2 RELATEDWORK

There are two lines of research closely related to this paper:

Unsupervised MTS representation learning. Unlike in domains

such as CV [8, 27, 29, 55] and NLP [12, 65], the study of URL in time

series is still in its infancy.

Inspired byword representation [36], Franceschi et al. [11] adapts

the triplet loss to time series to achieve URL. Similarly, Zerveas

et al. [60] explores the utility of transformer [51] for URL due to

the success of transformer in modeling natural language. Oord

et al. [39] proposes to learn the representation by predicting the

future in latent space. Eldele et al. [10] extends this idea by con-

ducting both temporal and contextual contrasting to improve the

representation quality. Instead of using prediction, Yue et al. [59]

combines timestamp-level contrasting with contextual contrasting

to achieve hierarchical representation. Tonekaboni et al. [46] as-

sumes consistency between overlapping temporal neighborhoods

to model dynamic latent states, while Yang and Hong [56] utilizes

the consistency between temporal and spectral domains to enrich

the representation. Although these methods have achieved improve-

ments in representation quality, they still have limitations such as

the lack of intuitions in encoder design and the dependency on

specific assumptions, as discussed in Section 1.

Time series shapelet. The concept of shapelet is first proposed

by Ye and Keogh [58] for supervised time series classification tasks.

It focuses on extracting features in a notable time range to reduce

the interference of noise, which is prevalent in time series.

In the early studies, shapelets are selected by enumerating subse-

quences of the training time series [5, 17, 38, 58], which suffers from

non-optimal representation and high computational overhead [13].

To address these problems, a shapelet learning method is first pro-

posed by Grabocka et al. [13], which directly learns the optimal

shapelets through a supervised objective. After this study, many

approaches [30, 33, 34, 54] have been proposed to improve the ef-

fectiveness and efficiency for classification. Except for supervised

classification task, some works [47, 61, 62] employ shapelets for

time series clustering and also show competitive performance.
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ShapeNet [25] is a special work related to both URL and shapelet.

However, it aims to “select” shapelets from existing candidates for

MTS classification, while it just adopts a CNN-based URL method

extended from [11] to assist the selection. It even contains a super-

vised feature selection step which uses the true labels. Instead, both

our CSL and other URL methods target a different problem that is

to automatically “learn” the new features not present in existing

feature set without using labels to tackle more than one task.

In summary, although shapelet-based representation has been

widely studied for classification and clustering tasks, it has never

been explored for the unsupervised learning of general-purpose

representations facilitating various tasks as our CSL.

3 PROBLEM STATEMENT

This section defines the key concept used in the paper. At first, we

define the data type we are interested in, multivariate time series.

Definition 3.1 (Multivariate Time Series). Multivariate time series

(MTS) is a set of variables, each including observations ordered by

successive time. Formally, we denote a multivariate time series sample

with 𝐷 variables (a.k.a. dimensions or channels) and 𝑇 timestamps

(a.k.a. length) as 𝒙 ∈ R𝐷×𝑇 , and a dataset containing 𝑁 samples as

𝑿 = {𝒙1, 𝒙2, ..., 𝒙𝑁 } ∈ R𝑁×𝐷×𝑇 .

Then, the problem that we are addressing, i.e., unsupervised

representation learning for MTS, is formulated as follows.

Definition 3.2 (Unsupervised Representation Learning for MTS).

Given an MTS dataset 𝑿 , the goal of unsupervised representation

learning (URL) is to train a neural network model (encoder) 𝑓 :

R
𝐷×𝑇 ↦→ R

𝐷𝑟𝑒𝑝𝑟 , such that the representation 𝒛𝑖 = 𝑓 (𝒙𝑖 ) can be

informative for downstream tasks, e.g., classification and anomaly

detection. Here unsupervised means that the labels of downstream

tasks are unavailable when training 𝑓 . To simplify the notation, we

denote 𝒁 = 𝑓 (𝑿 ) = {𝒛1, 𝒛2, ..., 𝒛𝑁 } in following sections.

It is worthy to note that some works limit “unsupervised (repre-

sentation) learning” to the unsupervised tasks (e.g., clustering [61]),

so the competitors are only the unsupervised methods. Instead, the

URL problem mentioned in this paper is to learn the features that

can not only tackle the unsupervised tasks, but also achieve compa-

rable performance to the supervised competitors on the classification

task, which can be more general yet challenging.

4 METHODOLOGY

In this section, the proposed framework and all components are

elaborated.

4.1 Overview

We illustrate the overview framework of the proposed contrastive

shapelet learning (CSL) in Fig. 1. Given the input 𝑿 , two data aug-

mentation methods, denoted as 𝐴′ (𝒙) and 𝐴′′ (𝒙), are randomly

selected from a library (to be discussed later) to produce two cor-

related views of 𝑿 as 𝑿 ′ = 𝐴′ (𝑿 ) and 𝑿 ′′ = 𝐴′′ (𝑿 ), where

𝐴′ (𝑿 ) = {𝐴′ (𝒙1), . . . , 𝐴′ (𝒙𝑁 )} and the same to 𝐴′′ (𝑿 ). Then

these two views are fed into a time-series-specific encoder named

Shapelet Transformer (ST), which embeds the samples into a latent

space (see Section 4.2). CSL explores the representation in this latent

space where different shapelets serve as the basis (see Section 4.3

ST

Scale 

Input× ×
,

Two random  
augmentations

... ...

... ...

Scale ...

×
Positive 

pair
Coarse-grained

contrasting
Fine-grained
contrasting

Multi-scale
alignment

Negative 
pair

× ×

× ×

× ,

Shapelet
Transformer

(Encoder)

Figure 1: Overview framework of CSL.

and 4.4). We believe that our method is more general as it does not

depend on task-specific assumptions like [11, 46, 59].

Formally, given 𝑿 ′ and 𝑿 ′′, we have the shapelet-based repre-

sentations as:

𝒁 ′ = 𝑓 (𝑿 ′) ∈ R𝑁×𝐷𝑟𝑒𝑝𝑟 ,

𝒁 ′′ = 𝑓 (𝑿 ′′) ∈ R𝑁×𝐷𝑟𝑒𝑝𝑟 .
(1)

Following the paradigm of contrastive learning [8, 10, 64], for

each 𝒙𝑖 , the embedding 𝒛′𝑖 should be close to 𝒛′′𝑖 whereas far away

from 𝒛′′𝑗 derived from other samples where 𝑗 ≠ 𝑖 . The encoder is

learned through maximizing the similarity of the positive pairs

(𝒛′𝑖 , 𝒛
′′
𝑖 ) and minimizing the similarity of the negative pairs (𝒛′𝑖 , 𝒛

′′
𝑗 ).

Note that using data augmentation to generate the positive pairs is

a common way for contrastive learning which is required by most

URL methods, including TS2Vec [59], TS-TCC [10], etc [56, 60].

Alternatively, T-Loss [11] and TNC [46] select subsequences as

positive samples. Both augmented and sampled time series serve

as the self-supervised signals in URL, which plays the similar role

as the labels used by the supervised methods (e.g., OSCNN [45]).

Despite the success of contrastive learning in URL [10, 56, 59, 64],

an open question is how to determine proper data augmentation

methods to ensure representation similarity of positive samples [8],

which could be data- and model-dependent [22]. It is beyond the

scope of this paper to develop new augmentation techniques or

augmentation selection algorithms. Instead, we construct a data

augmentation library which contains diverse types of methods for

the random selection at each training step (illustrated in Fig. 1), so

that they can be complementary with each other to adapt to various

time series data. The library consists of five well-established time

series augmentation methods, including jittering 𝐽 (𝒙) that adds
random noise to each observation, cropping𝐶 (𝒙) that crops the time

series into a randomly selected subsequence, time warping 𝑇𝑊 (𝒙)
that stretches or contracts the randomly selected subsequences,

quantizing 𝑄 (𝒙) that quantizes each observation to the nearest

level, and pooling 𝑃 (𝒙) that reduces the temporal resolution using

average pooling on each consecutive observations. We illustrate

how they are performed using the running examples in Fig. 2, and

we refer interested readers to [20, 48] for more details.

The encoder ST is designed to capture the patterns of different

time scales using separated shapelets with different lengths. Thus,

we propose a multi-grained contrasting objective to simultaneously

perform contrastive learning on the shapelet-based embedding of

every single scale (fined-grained contrasting) and the representa-

tions in the joint space R𝐷𝑟𝑒𝑝𝑟 regarding all scales (coarse-grained

388



(a) Origin. (b) Jittering. (c) Cropping.

(d) Time warping. (e) Quantizing. (f) Pooling.

Figure 2: Illustration of the data augmentationmethods using

a two-dimensional time series. All methods are identically

performed on each dimension of the original time series.

contrasting). Additionally, inspired by the consensus principle in

multi-view learning [53], we design a multi-scale alignment term

to encourage the features at different scales to achieve agreement.

In the rest of this section, we elaborate the key components

of the proposed CSL framework, including Shapelet Transformer,

multi-grained contrasting, and multi-scale alignment.

4.2 Shapelet Transformer

Shapelet is originally designed to extract representative shape fea-

tures of univariate time series [58]. In this paper, we simply extend

it to a more general multivariate case. Given a sample 𝒙 ∈ R𝐷×𝑇 ,

a multivariate shapelet 𝒔 ∈ R𝐷×𝐿 (𝐿 < 𝑇 ) which has the same

dimension 𝐷 encodes 𝑥 using the Euclidean norm between 𝒔 and
the best-matching subsequence relative to 𝒔 within 𝒙 , defined as:

𝑑𝑖𝑠𝑡 (𝒙, 𝒔) = min
𝑡=1,2,...,𝑇−𝐿+1

| |𝒙 [𝑡, 𝐿] − 𝒔 | |2 ∈ R, (2)

where 𝒙 [𝑡, 𝐿] denotes the subsequence of 𝒙 starting at timestamp

𝑡 and lasting 𝐿 steps. By taking 𝒔 as trainable parameter, we can

directly learn the optimal shapelet like any neural network using

the optimization algorithm such as stochastic gradient descent

(SGD) [33]. However, it is difficult to capture patterns beyond shapes

for the original definition in Eq. (2), such as the spectral information

in the frequency domain, which can limit the capability of the

shapelet-based encoder. To address this problem, we extend the

representation to a general form as:

𝑔(𝒙, 𝒔, 𝑑) = agg𝑑
𝑡=1,2,...,𝑇−𝐿+1

𝐷∑
𝑗=1

𝑑 (𝒙 𝑗 [𝑡, 𝐿], 𝒔 𝑗 ) ∈ R, (3)

where 𝒙 𝑗 (𝒔 𝑗 ) represents the series (shapelet) at 𝑗-th dimension,

and agg𝑑 is the aggregator that produces the result of 𝑑 between

the most similar pair of (𝒙 [𝑖, 𝐿], 𝒔). 𝑑 (·, ·) can be any (dis)similarity

measure for equal-length series. Eq. (2) is obviously a special case

of Eq. (3) when 𝑑 is Euclidean norm, and 𝑔 corresponds to 1-D

convolution when 𝑑 is the cross-correlation function [9].

Based on Eq. (3), we design a shapelet-based encoder named

Shapelet Transformer (ST), which is shown in Fig. 3. To extract

diverse temporal patterns, ST is a combination of multiple sub-

modules with shapelets of 𝑅 various lengths (scales) and𝑀 different

(dis)similarity measures. The core idea comes from the observa-

tions that i) time series could possess both short-term and long-

term patterns in practice [45, 57], and ii) different measures can

be complementary with each other to produce more informative

features [31]. However, our design is eventually different from ex-

isting approaches since we simultaneously consider these two aspects

in a unified shapelet-based architecture.

×

,
,

,
,

,
,

,
,

Shapelets, × ×

Sub-module ,

Figure 3: Architecture of Shapelet Transformer (ST)

We denote the sub-module with shapelets of length 𝐿𝑟 (scale 𝑟 )
and (dis)similarity measure 𝑑𝑚 as 𝑓𝑟,𝑚 . Each 𝑓𝑟,𝑚 has 𝑉 shapelets

𝒔𝑟,𝑚,1, . . . , 𝒔𝑟,𝑚,𝑉 that separately embed the input. The outputs of all

sub-modules for one sample are concatenated to jointly represent

the sample. Formally, the encoder ST is defined as:

𝒛𝑖 =𝑓 (𝒙𝑖 ) = 𝒛𝑖,1 ⊕ 𝒛𝑖,2 ⊕ . . . ⊕ 𝒛𝑖,𝑅,

𝒛𝑖,𝑟 =𝑓𝑟,1 (𝒙𝑖 ) ⊕ 𝑓𝑟,2 (𝒙𝑖 ) ⊕ . . . ⊕ 𝑓𝑟,𝑀 (𝒙𝑖 ),

𝑓𝑟,𝑚 (𝒙𝑖 ) =[𝑓𝑟,𝑚,1 (𝒙𝑖 ), 𝑓𝑟,𝑚,2 (𝒙𝑖 ), . . . , 𝑓𝑟,𝑚,𝑉 (𝒙𝑖 )],

(4)

where ⊕ is the concatenation operator, 𝒛𝑖,𝑟 ∈ R𝐾 (𝐾 = 𝑀𝑉 ) denotes

the representation of 𝒙𝑖 at scale 𝑟 , and 𝑓𝑟,𝑚,𝑣 (𝒙𝑖 ) = 𝑔(𝒙𝑖 , 𝒔𝑟,𝑚,𝑣, 𝑑𝑚).

Note that although extracting multi-scale features is a widely

adopted idea for time series [45, 57], the proposed Shapelet Trans-

former provides a simple yet effective way to achieve contrastive

learning for the features of different scales (Section 4.3) and to max-

imize the agreement of the scales (Section 4.4), which we show es-

sential for improving the performance (Section 5.3). The reason is

that we simply concatenate the features encoded by each of the

shapelets, and thus the representations of different scales can be

separated from each other, while the features of existing multi-scale

networks [45, 57] are usually fused through complicated layer-by-

layer structures. Moreover, integrating multiple measures into the

multi-scale shapelet-based architecture is also a simple yet effective

idea for improving the URL performance (Section 5.3).

Shapelet Transformer is a unified architecture that can be flexi-

bly changed by varying 𝑅,𝑀 ,𝑉 , 𝐿𝑟 , 𝑑𝑚 if one has prior knowledge,

such as the time scale of the MTS patterns. Considering that prior

knowledge is not always easy to access, we introduce a general con-

figuration of the model structure. Specifically, we fix 𝑅 to a moderate

value of 8 and adaptively set 𝐿𝑟 as the evenly spaced numbers over

[0.1𝑇, 0.8𝑇 ], i.e., 𝐿𝑟 = 𝑟 × 0.1𝑇 ( 𝑟 ∈ {1, . . . , 𝑅}), to approximately

match the patterns from short to long term. Three widely adopted

(dis)similarity measures are considered, including Euclidean dis-

tance (𝑑1), cosine similarity (𝑑2) and cross correlation (𝑑3). As such,
given the dimension 𝐷𝑟𝑒𝑝𝑟 of the output embedding, the encoder

structure can be automatically determined.

4.3 Multi-grained Contrasting

After encoding the training samples, we employ contrastive learn-

ing, a popular paradigm that has achieved success in URL, to learn

the Shapelet Transformer. The principle of contrastive learning is

to pull close the positive pairs and push apart the negative pairs in

the embedding space. In this paper, we adopt the InfoNCE loss [39]

to separate positive from negative samples because it is one of the

most popular loss functions in contrastive learning which has been

widely shown effective [15, 39, 41], but the contrastive loss in any
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× ×

,

,

Figure 4: Illustration of multi-grained contrasting and multi-

scale alignment. Display one shapelet at each scale for clarity.

other form can also fit in our framework. Given an embedding 𝒛𝑖
of a sample 𝒙𝑖 and a set 𝒁 that contains the embeddings of one

positive sample 𝒙+𝑖 and 𝑁 −1 negative samples of 𝒙𝑖 , the contrastive
loss is defined as:

L𝐼𝑁 (𝑧𝑖 ,𝒁 ) = − log
exp(sim(𝒛𝑖 , 𝒛+𝑖 )/𝜏)∑

𝒛′ ∈𝒁 exp(sim(𝒛𝑖 , 𝒛′)/𝜏)
, (5)

where 𝒛+𝑖 is the embedding of 𝒙+𝑖 , sim(𝒖, 𝒗) = 𝒖 · 𝒗/‖𝒖‖‖𝒗‖ is the
cosine similarity, and 𝜏 is a temperature parameter that controls

the strength of penalties on hard negative samples [39].

Recall that our Shapelet Transformer embeds one MTS sample

into 𝑅 separate embedding spaces which capture temporal features

at different time scales. Thus, we propose a multi-grained contrast-

ing objective that explicitly considers not only the joint embedding

space of the 𝑅 scales, but also the latent space for each single scale, as

illustrated in Fig. 4. Specifically, we consider contrastive learning

in the joint embedding space of all scales as the coarse-grained

contrasting. The loss is defined as:

L𝐶 =
𝑁∑
𝑖=1

L𝐼𝑁 (𝒛′𝑖 ,𝒁
′′). (6)

In parallel, the fine-grained contrasting is performed for embedding

at each time scale 𝑟 ∈ {1, ..., 𝑅}, defined as:

L𝐹,𝑟 =
𝑁∑
𝑖=1

L𝐼𝑁 (𝒛′𝑖,𝑟 ,𝒁
′′
𝑟 ). (7)

The multi-grained contrastive loss is the sum of the coarse-fined

and the fine-grained loss functions, i.e.,

L𝑀 = L𝐶 +

𝑅∑
𝑟=1

L𝐹,𝑟 . (8)

One may wonder why the coarse-grained contrasting is required

given that the optimal representations at each single scale seem to

be learned using the fine-grained losses. The intuition is that with

only the fine-grained contrasting, the learning process could be

dominated by some scales, i.e., the embeddings of some scales are

well learned but the others are not, such that the joint embedding

is not optimal. Thus, we design the coarse-grained loss to explicitly

encourage feature similarity in the joint embedding space, so that

to “balance” the representation quality of each scale to improve the

final performance. We further clarify this issue in Section 5.3.

4.4 Multi-scale Alignment

As illustrated in Fig. 4, the joint embedding space R𝐷𝑟𝑒𝑝𝑟 (𝐷𝑟𝑒𝑝𝑟 =
𝑅𝐾) is composed by the space R𝐾 of each single scale. For one time

series, the features of different scales are extracted using shapelets

of different lengths, and thus can be seen as different views of

the sample (similar to images of a 3-D object taken from different

viewpoints [53]). From the perspective of multi-view learning, the

representations of different lengths have not only complementary

information but also consensus because the shapelets of different

lengths can match some correlated time regions. Since we have

leveraged the complementary information by using the joint em-

beddings, we propose to enhance the consensus over different scales,

which can help to reduce the error rate of each view (scale) [53].

Inspired by Canonical Correlation Analysis (CCA) [1], we design

a multi-scale alignment strategy to promote the consensus. The

basic idea is to encourage the embeddings of one sample for different

scales to be maximally correlated. Formally, given representations

𝒁1,𝒁2, ...,𝒁𝑅 ∈ R𝑁×𝐾 that have been column-wise normalized, the

objective is minimizing the 𝐿2 distance between each orthogonal

features and their mean centers:

argmin

𝑅∑
𝑟=1

| |𝒁𝑟 − 𝒁̄ | |2𝐹 ,

s.t. 𝒁𝑇𝑟 𝒁𝑟 = 𝑰 ,∀ 𝑟 ∈ {1, 2, . . . , 𝑅},

(9)

where 𝒁̄ = 1
𝑅

∑𝑅
𝑟=1 𝒁𝑟 are the mean centers of the representations.

Eq. (9) has orthogonality constraints thus cannot be optimized

end-to-end with other objective functions, which could limit its ef-

fectiveness [6]. Inspired by the soft decorrelation method proposed

in [6], we formulate the orthogonality constraints as a loss function

to achieve end-to-end learning. The core idea is to approximate the

full-batch covariance matrix at each training step by stochastic

incremental learning and encourage sparsity in the off-diagonal

elements of the approximated covariance matrix using 𝐿1 regular-
ization. Consider the mini-batch representation 𝒁𝐵 ∈ R𝐵×𝐾 of size

𝐵 which has been batch normalized [21]. At 𝑡-th training step, we

compute the mini-batch covariance matrix𝐶𝑡𝐵 = 1
𝐵−1𝒁

𝑇
𝐵𝒁𝐵 and an

accumulative covariance matrix over each mini batch as:

𝑪𝑡𝑎𝑐𝑐𝑢 = 𝛼𝑪𝑡−1𝑎𝑐𝑐𝑢 + 𝑪𝑡𝐵, (10)

where𝛼 ∈ [0, 1) is a forgetting/decay rate, and 𝑪0
𝑎𝑐𝑐𝑢 is initialized as

all-zero matrix. As such, the full-batch covariance matrix 𝑪𝑡 = 𝒁𝑇𝒁
can be approximated by 𝑪 𝑡̂ as:

𝑪 𝑡̂ =
𝑪𝑡𝑎𝑐𝑐𝑢
𝑐𝑡

, (11)

where 𝑐𝑡 = 𝛼𝑐𝑡−1 + 1 is a normalizing factor with 𝑐0 = 0.

Given the approximate full-batch covariancematrix 𝑪 𝑡̂ in Eq. (11),
the orthogonality constraints 𝒁𝑇𝒁 = 𝑰 can be achieved in a soft

procedure by minimizing an 𝐿1 loss in the off-diagonal elements to

penalize the correlation. Denote the element of 𝑪 𝑡̂ at entry (𝑖, 𝑗) as
𝜙𝑡𝑖, 𝑗 . The soft orthogonality loss is defined as:

L𝑆 (𝒁 ) =
𝐾∑
𝑖=1

𝐾∑
𝑗=𝑖+1

|𝜙𝑡𝑖, 𝑗 |. (12)
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Table 1: Time and space complexity for CSL and the URL

baselines.

Complexity TS2Vec T-Loss TNC TS-TCC TST CSL

Time 𝑂 (𝑁𝑇 (𝑇 + 𝐷2)) 𝑂 (𝑁𝑇𝐷) 𝑂 (𝑁𝑇𝐷) 𝑂 (𝑁𝑇 (𝑇 + 𝐷)) 𝑂 (𝑁𝑇 (𝑇 + 𝐷2)) 𝑂 (𝑁𝑇 2𝐷)
Space 𝑂 (𝑇𝐷 +𝑇 2) 𝑂 (𝐷) 𝑂 (𝐷) 𝑂 (𝑇𝐷 +𝑇 2) 𝑂 (𝑇𝐷 +𝑇 2) 𝑂 (𝑇𝐷)

Based on Eq. (9) and (12), we define our multi-scale alignment

loss on top of both 𝒁 ′ and 𝒁 ′′ as:

L𝐴 =
∑

𝒁 ∈{𝒁 ′,𝒁 ′′ }

( 𝑅∑
𝑟=1

| |𝒁𝑟 − 𝒁̄ | |2𝐹 + 𝜆𝑆

𝑅∑
𝑟=1

L𝑆 (𝒁𝑟 )

)
, (13)

where 𝜆𝑆 controls the importance of the soft orthogonality loss.

It is noteworthy that the idea behind L𝐴 of aligning multi-scale

information can be a general scheme for modeling MTS, which is

worth further exploration in the future.

4.5 Summary and Complexity Analysis

Summary. Based on the discussion in Section 4.3 and Section 4.4,

the total loss of the proposed CSL is defined as:

L = L𝑀 + 𝜆L𝐴 =

(
L𝐶 +

𝑅∑
𝑟=1

L𝐹,𝑟

)
+ 𝜆L𝐴, (14)

where 𝜆 controls the importance of multi-scale alignment.

The encoder (i.e., ST) 𝑓 (𝒙 ;𝜽 ) is unsupervisedly trained by mini-

mizing the lossL using the popular back-propogation algorithm [7],

where 𝜽 denotes trainable parameters which are updated within

each mini batch. The learned encoder maps MTS into latent repre-

sentation as 𝒛𝑖 = 𝑓 (𝒙𝑖 ;𝜽 ), and 𝒛𝑖 is used for downstream tasks.

Complexity analysis.All data augmentation methods used in CSL

take 𝑂 (𝐵𝑇𝐷) time for MTS samples in a mini batch of size 𝐵 [20].

The encoder ST takes𝑂 (𝐵𝐿𝑠 (𝑇−𝐿𝑠+1)𝐷𝐷𝑟𝑒𝑝𝑟 ) time for embedding

the time series into representations, where 𝐿𝑠 is the shapelet length.
Recall that 𝑅𝐾 = 𝐷𝑟𝑒𝑝𝑟 . Therefore, both L𝐶 and

∑𝑅
𝑟=1 L𝐹,𝑟 can

be computed in 𝑂 (𝐵2𝐷𝑟𝑒𝑝𝑟 ) time and computing
∑𝑅
𝑟=1 | |𝒁𝑟 − 𝒁̄ | |2𝐹

takes 𝑂 (𝐵𝐷𝑟𝑒𝑝𝑟 ) time. The computation of L𝑆 (𝒁𝑟 ) takes 𝑂 (𝐵2𝐾)

time dominated by computing𝐶𝑡𝐵 = 1
𝐵−1𝒁

𝑇
𝐵𝒁𝐵 . Since each training

epoch has 	𝑁𝐵 
 batches, the total time complexity for training CSL

is𝑂 (𝑁𝑇𝐷 +𝑁𝐿𝑠 (𝑇 − 𝐿𝑠 + 1)𝐷𝐷𝑟𝑒𝑝𝑟 +𝑁𝐵𝐷𝑟𝑒𝑝𝑟 ). Considering that

𝐵 and 𝐷𝑟𝑒𝑝𝑟 are constants and we set 𝐿𝑠 to be proportional to 𝑇 ,

the time complexity can be simplified as 𝑂 (𝑁𝑇 2𝐷). Similarly, the

space complexity for the CSL training algorithm is 𝑂 (𝑇𝐷).
We compare the complexity of CSL to that of the advanced

URL baselines in Table 1. CSL is theoretically more scalable than

TS2Vec and TST when 𝐷 >> 𝑇 , otherwise they have the same

time complexity. CSL also has less space complexity than TS2Vec

and TST. Compared to TS-TCC, the time complexity of CSL is the

same or somewhat greater according to the relation between𝑇 and

𝐷 , but CSL has less space complexity. T-Loss and TNC are more

scalable in both time and space. However, the two methods rely on

many sequential operations which can not be accelerated by GPUs.

The experimental results in Section 5.8 show that they run much

slower than CSL, TS2Vec, TST and TS-TCC with a considerably

large input scale. Moreover, we show that our CSL, though primarily

designed for improving the representation quality, also has faster

training speed for real-world tasks, saying that it can achieve better

performance with equal or less training time.

Table 2: Statistics of the 30 UEA datasets. All datasets are

used for classification evaluation and the 12 subsets marked

by ∗ are used for clustering evaluation following [61].

Dataset # Train # Test # Dim Length # Class

ArticularyWordRecognition (AW)∗ 275 300 9 144 25

AtrialFibrillation (AF)∗ 15 15 2 640 3

BasicMotions (BM)∗ 40 40 6 100 4

CharacterTrajectories (CT) 1422 1436 3 182 20

Cricket (Cr) 108 72 6 1197 12

DuckDuckGeese (DD) 50 50 1345 270 5

EigenWorms (EW) 128 131 6 17984 5

Epilepsy (Ep)∗ 137 138 3 206 4

EthanolConcentration (EC) 261 263 3 1751 4

ERing (ER)∗ 30 270 4 65 6

FaceDetection (FD) 5890 3524 144 62 2

FingerMovements (FM) 316 100 28 50 2

HandMovementDirection (HM)∗ 160 74 10 400 4

Handwriting (Ha) 150 850 3 152 26

Heartbeat (He) 204 205 61 405 2

InsectWingbeat (IW) 30000 20000 200 30 10

JapaneseVowels (JV) 270 370 12 29 9

Libras (Li)∗ 180 180 2 45 15

LSST (LS) 2459 2466 6 36 14

MotorImagery (MI) 278 100 64 3000 2

NATOPS (NA)∗ 180 180 24 51 6

PenDigits (PD)∗ 7494 3498 2 8 10

PEMS-SF (PE)∗ 267 173 963 144 7

PhonemeSpectra (PS) 3315 3353 11 217 39

RacketSports (RS) 151 152 6 30 4

SelfRegulationSCP1 (SR1) 268 293 6 896 2

SelfRegulationSCP2 (SR2) 200 180 7 1152 2

SpokenArabicDigits (SA) 6599 2199 13 93 10

StandWalkJump (SW)∗ 12 15 4 2500 3

UWaveGestureLibrary (UW)∗ 120 320 3 315 8

Table 3: Statistics of used anomaly detection datasets.

Dataset # Entity # Dim Train length Test length Anomaly ratio (%)

SMAP 55 25 135183 427617 13.13

MSL 27 55 58317 73729 10.72

SMD 12 38 304168 304174 5.84

ASD 12 19 102331 51840 4.61

5 EXPERIMENTS

5.1 Experimental Setup

We conduct extensive experiments using total 34 real-world datasets

to assess the representation quality of CSL. Three main tasks are

investigated including the supervised classification task and the

unsupervised clustering and anomaly detection tasks. Note that

URL considers the MTS representation at the segment level, thus we

work on segment-level anomaly detection (rather than observation-

level [28, 44]). In specific, we consider series at each sliding window

𝒙𝑖 [𝑡,𝑤], 𝑡 = 1, 2, ..., 𝑁 −𝑤 + 1 as an anomaly if it contains at least

one anomalous observation. We train the popular SVM, K-means,

and Isolation Forest on top of the learned representations to solve

the three tasks respectively. We describe the datasets, baselines,

implementations and evaluation metrics as follows.

Datasets.We use 34 MTS datasets with various sample size, dimen-

sion, series length, number of classes and application scenario to

evaluate the representation quality on the three downstream tasks.

We use the default train/test split for all datasets where only the

training data are used for learning the encoder and task-specific

models. The datasets used for each task are present below.
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(1) Classification. To benchmark the result, we evaluate the per-

formance of MTS classification on all 30 datasets of the popular

UEA archive [3]. These data are collected from various domains,

e.g., human action recognition, Electrocardiography monitoring

and audio classification. The dataset statistics is present in Table 2.

(2) Clustering. Following a recent work ofmultivariate time series

clustering [61], we evaluate the clustering performance using 12

UEA subsets which are highly heterogenerous in train/test size,

length, and the number of dimensions and classes. The statistics of

these 12 datasets are shown in Table 2 (marked by ∗).

(3) Anomaly Detection. Four recently published datasets collected

from several challenging real-world applications are used for anom-

aly detection. Soil Moisture Active Passive satellite (SMAP) and

Mars Science Laboratory rover (MSL) are two spacecraft anomaly

detection datasets from NASA [18]. Server Machine Dataset (SMD)

is a 5-week-long dataset collected by [44] from a large Internet

company. Application Server Dataset (ASD) is a 45-day-long MTS

charactering the status of the servers recently collected by [28].

Following [28], for SMD, we use the 12 entities that do not suffer

concept drift for evaluation. Table 3 shows the dataset statistics.

Baselines. We use 21 baselines for comparison, which are catego-

rized into two groups:

(1) URL methods.We compare our CSL with 5 URL baselines spe-

cially designed for time series, including TS2Vec [59], T-Loss [11],

TNC [46], TS-TCC [10], and TST [60]. All URL competitors are eval-

uated in the same way as CSL for a fair comparison. More details

of these methods are discussed in Section 2.

(2) Task-specific methods.We also include baselines tailored for

downstream tasks. We select outstanding approaches for classifi-

cation, containing the most popular baseline DTWD which adopts

the one-nearest-neighbor classifier with dynamic time warping as

the distance metric [3] and five supervised techniques, including

the RNN-based MLSTM-FCNs [23], the attentional prototype-based

TapNet [63], the shapelet-based ShapeNet [25], and the CNN-based

OSCNN [45] and DSN [52]. To avoid an unfair comparison, we

let outside the ensemble methods like [31]. Recall that the super-

vised classification methods use the true labels to learn the features,

which is benchmarked against the data augmentation or sampling

in URL. Thus, the comparison is fair without further applying the

data augmentation methods of CSL on the baseline approaches.

We consider six advanced clustering baselines including the di-

mension reduction-based MC2PCA [26] and TCK [35], the distance-

based m-kAVG+ED and m-kDBA [40], the deep learning-based

DeTSEC [19], and the shapelet-based MUSLA [61]. In addition, we

design ShapeNet-Clustering (SN-C), an adaption of the classifica-

tion baseline ShapeNet which is also based on the shapelets. In

SN-C, we dismiss the supervised feature selection of ShapeNet and

use K-means rather than SVM upon the features for clustering.

Since no evaluation is reported on the anomaly detection datasets

under the segment-level setting, we develop 2 baselines on top of

the raw MTS using also Isolation Forest for a fair comparison. The

models take the observations either at each timestamp (denoted as

IF-p) or within each sliding window (denoted as IF-s) as the input.

Similarly, we also adapt ShapeNet for anomaly detection (SN-AD)

by dismissing the supervised feature selection of ShapeNet and

using Isolation Forest upon the shapelet-transformed features.

Implementations.We implement the CSL model using PyTorch

1.10.2 and run all experiments on a Ubuntumachine with Tesla V100

GPU. The SVM, K-means, and Isolation Forest are implemented

using Scikit-learn 1.1.1 and the data augmentation methods are

implemented using tsaug [20] with default parameters. Most of the

hyper-parameters of CSL are set to fixed values for all experiments

without tuning. We adopt SGD optimizer to learn the ST encoder.

The learning rate is set to 0.01. Batchnorm is applied after the encod-

ing. We set 𝛼 = 0.5 in soft orthogonality and 𝜆 = 0.01, 𝜆𝑆 = 1 in loss

functions. The batch size is set to 8 for all UEA datasets and 256 for

the anomaly detection datasets. The temperature 𝜏 is selected from

{0.1, 0.01, 0.001} by cross validation for the UEA datasets and is

fixed to 0.1 for the anomaly detection datasets. Following previous

works [59, 61], the embedding dimension is fixed to 𝐷𝑟𝑒𝑝𝑟 = 320

for classification and is chosen from {80, 240, 320} for clustering
for a fair comparison. On anomaly detection tasks, we set 𝐷𝑟𝑒𝑝𝑟 to

240, 320, 48, 32 for SMAP, MSL, SMD, and ASD respectively.

We reproduce the URL baselines using the open source code from

the authors’ implementations with the recommended configura-

tions. The results of the classification baselines and the task-specific

clustering baselines are taken from the published papers [3, 25, 45,

52, 59, 61]. Other results are based on our reproduction.

Metrics. Standard metrics are employed to evaluate the perfor-

mance of the downstream tasks. We utilize Accuracy (Acc) [3] in

classification tasks. Clustering results are evaluated using Rand

Index (RI) and Normalized Mutual Information (NMI) [61, 62]. And

F1-score is adopted for anomaly detection [14, 28].

5.2 Main Results

Table 4, 5 and 6 summarize the results on classification, clustering,

and anomaly detection tasks. We report the average ranking (AR)

of algorithms on each dataset, and count the number of datasets

in which the CSL wins/ties/loses (W/T/L) the counterparts in the

one-versus-one comparisons. The Wilcoxon rank test’s p-values

(p-val) are employed to quantificationally evaluate the significance.

In summary, the proposed CSL outperforms the URL competi-

tors on most of the tasks and datasets, achieving the best overall

performance. Moreover, CSL can achieve performance comparable

to the approaches customized for classification and clustering. The

results show the excellent ability of CSL in unsupervised learning

of high-quality and general-purpose MTS representation. Below

we discuss the results in detail for each task.

Classification. As shown in Table 4, CSL achieves competitive

performance on most of the datasets. It has the highest average

accuracy and accuracy ranking. Specifically, among the 30 datasets,

CSL achieves the best accuracy in 21 of them if compared to URL

methods only, and the highest accuracy in 12 of them (best in all

algorithms) if all methods are considered. In the one-versus-one

comparison, CSL outperforms all URL competitors in terms of the

number of wins on the datasets. These results are in line with our

expectations, as shapelets are originally designed to extract time

series patterns that can effectively distinguish different classes. CSL

further enhances the advantages of shapelets by jointly using the

shapelets of different lengths and multiple (dis)similarity measures,

and by using a novel objective for model training. To our surprise,

CSL achieves better overall accuracy than the fully supervised coun-

terparts. Compared to the supervised learning methods and based
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(a) TS2Vec. (b) T-Loss. (c) TNC. (d) TS-TCC. (e) TST. (f) ShapeNet. (g) CSL.

Figure 5: Two-dimensional t-SNE [50] visualization of the unsupervised learned representation for ERing test set. Classes are

distinguishable using their respective marker shapes and colors.

Table 4: Performance comparison on MTS classification. The best results among URL methods are highlighted in bold and †

indicates the best among all competitors. The underlined value indicates significant difference under a statistical level of 0.05.

Dataset
Tailored Classification Approaches Unsupervised Representation Learning + Classifier

DTWD MLSTM-FCNs TapNet ShapeNet OSCNN DSN TS2Vec T-Loss TNC TS-TCC TST CSL

AW 0.987 0.973 0.987 0.987 0.988 0.984 0.987 0.943 0.973 0.953 0.977 0.990†

AF 0.200 0.267 0.333 0.400 0.233 0.067 0.200 0.133 0.133 0.267 0.067 0.533†

BM 0.975 0.950 1.000† 1.000† 1.000† 1.000† 0.975 1.000† 0.975 1.000† 0.975 1.000†

CT 0.989 0.985 0.997 0.980 0.998† 0.994 0.995 0.993 0.967 0.985 0.975 0.991

Cr 1.000† 0.917 0.958 0.986 0.993 0.989 0.972 0.972 0.958 0.917 1.000† 0.994

DD 0.600 0.675 0.575 0.725† 0.540 0.568 0.680 0.650 0.460 0.380 0.620 0.380

EW 0.618 0.504 0.489 0.878† 0.414 0.391 0.847 0.840 0.840 0.779 0.748 0.779

Ep 0.964 0.761 0.971 0.987 0.980 0.999† 0.964 0.971 0.957 0.957 0.949 0.986

ER 0.133 0.133 0.133 0.133 0.882 0.922 0.874 0.133 0.852 0.904 0.874 0.967†

EC 0.323 0.373 0.323 0.312 0.241 0.245 0.308 0.205 0.297 0.285 0.262 0.498†

FD 0.529 0.545 0.556 0.602 0.575 0.635† 0.501 0.513 0.536 0.544 0.534 0.593

FM 0.530 0.580 0.530 0.580 0.568 0.492 0.480 0.580 0.470 0.460 0.560 0.59†

HM 0.231 0.365 0.378 0.338 0.443† 0.373 0.338 0.351 0.324 0.243 0.243 0.432

Ha 0.286 0.286 0.357 0.451 0.668† 0.337 0.515 0.451 0.249 0.498 0.225 0.533

He 0.717 0.663 0.751 0.756 0.489 0.783† 0.683 0.741 0.746 0.751 0.746 0.722

IW N/A 0.167 0.208 0.250 0.667† 0.386 0.466 0.156 0.469 0.264 0.105 0.256

JV 0.949 0.976 0.965 0.984 0.991† 0.987 0.984 0.989 0.978 0.930 0.978 0.919

Li 0.870 0.856 0.850 0.856 0.950 0.964† 0.867 0.883 0.817 0.822 0.656 0.906

LS 0.551 0.373 0.568 0.590 0.413 0.603 0.537 0.509 0.595 0.474 0.408 0.617†

MI 0.500 0.510 0.590 0.610† 0.535 0.574 0.510 0.580 0.500 0.610† 0.500 0.610†

NA 0.883 0.889 0.939 0.883 0.968 0.978† 0.928 0.917 0.911 0.822 0.850 0.878

PE 0.711 0.699 0.751 0.751 0.760 0.801 0.682 0.676 0.699 0.734 0.740 0.827†

PD 0.977 0.978 0.980 0.977 0.986 0.987 0.989 0.981 0.979 0.974 0.56 0.990†

PS 0.151 0.110 0.175 0.298 0.299† 0.320 0.233 0.222 0.207 0.252 0.085 0.255

RS 0.803 0.803 0.868 0.882† 0.877 0.862 0.855 0.855 0.776 0.816 0.809 0.882†

SR1 0.775 0.874† 0.652 0.782 0.835 0.717 0.812 0.843 0.799 0.823 0.754 0.846

SR2 0.539 0.472 0.550 0.578† 0.532 0.464 0.578† 0.539 0.550 0.533 0.550 0.494

SA 0.963 0.990 0.983 0.975 0.997† 0.991 0.988 0.905 0.934 0.970 0.923 0.990

SW 0.200 0.067 0.400 0.533 0.383 0.387 0.467 0.333 0.400 0.333 0.267 0.667†

UW 0.903 0.891 0.894 0.906 0.927† 0.916 0.906 0.875 0.759 0.753 0.575 0.922

Avg (excl. IW) 0.650 0.637 0.673 0.714 0.706 0.701 0.712 0.675 0.677 0.682 0.635 0.751†

Avg (incl. IW) N/A 0.621 0.657 0.699 0.704 0.691 0.704 0.658 0.670 0.668 0.617 0.735†

AR (URL) / / / / / / 2.82 3.52 4.02 3.87 4.70 2.08

AR (All) 8.17 8.10 6.00 4.68 4.53 4.98 5.87 6.97 8.10 7.82 9.02 3.77†

W/T/L 25/0/5 25/1/4 23/1/6 18/3/9 17/1/12 18/1/11 23/0/7 22/1/7 23/0/7 22/4/4 25/0/5 /

p-val 0.0003 0.0003 0.0038 0.1075 0.4174 0.2177 0.0316 0.0058 0.0066 0.0002 0.0002 /

on the Wilcoxon rank test, our CSL has surpassed MSLTM-FCNs

and TapNet and is on par with ShapeNet, OSCNN, and DSN, show-

ing that CSL has reached a comparable level to supervised learning.

This implies that class-specific features can be learned from the

inherent structure of the data without supervised information, thus

labels are only needed for classifier training. Furthermore, we ob-

serve that CSL performs poorly on DuckDuckGeese (DD), which

has a very high dimension of 1345 (see Table 2). This may indicate

a relative weakness of CSL in dealing with high-dimensional MTS,

which is a possible direction to further improve our method.

Clustering. The results of the clustering tasks are shown in Table 5.

CSL outperforms all the other competitors except MUSLA. We note

that the best performance for most of the datasets is achieved

by either CSL or MUSLA, which are both based on time series

shapelet methods. This result shows the superiority of shapelet

features for the MTS clustering tasks. CSL outperforms MUSLA in

terms of average ranking, the number of best performances, and

the number of wins in one-versus-one comparisons, while slightly

underperforming MUSLA in terms of average RI and NMI. Overall,

there is no statistically significant difference between these two

methods. We would like to emphasize that MUSLA is a specialized

clustering method, while our CSL is a generic URL algorithm that

can be used for a variety of downstream tasks. MUSLA also relies

on exhaustive search or prior knowledge to determine the length of

shapelets, while CSL can achieve comparable performance without

any effort in this regard. Besides, we notice that SN-C has almost

the worst overall performance, which indicates that the URL-based

shapelet selection method of ShapeNet which is customized for

classification cannot be well generalized to the clustering problem.
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Table 5: Performance comparison on MTS clustering. The best results among URL methods are highlighted in bold, and †

indicates the best among all competitors. The underlined value indicates significant difference under a statistical level of 0.05.

Dataset Metric
Tailored Clustering Approaches Unsupervised Representation Learning + Clustering

MC2PCA TCK m-kAVG+ED m-kDBA DeTSEC MUSLA SN-C TS2Vec T-Loss TNC TS-TCC TST CSL

AW
RI 0.989 0.973 0.952 0.934 0.972 0.977 0.936 0.980 0.975 0.938 0.946 0.978 0.990†

NMI 0.934 0.873 0.834 0.741 0.792 0.838 0.492 0.880 0.842 0.565 0.621 0.866 0.942†

AF
RI 0.514 0.552 0.705 0.686 0.629 0.724 0.410 0.465 0.469 0.518 0.469 0.444 0.743†

NMI 0.514 0.191 0.516 0.317 0.293 0.538 0.213 0.080 0.149 0.147 0.164 0.171 0.587†

BM
RI 0.791 0.868 0.772 0.749 0.717 1.000† 0.836 0.854 0.936 0.719 0.856 0.844 1.000†

NMI 0.674 0.776 0.543 0.639 0.800 1.000† 0.736 0.820 0.871 0.394 0.823 0.790 1.000†

Ep
RI 0.613 0.786 0.768 0.777 0.840 0.816 0.695 0.706 0.705 0.650 0.736 0.718 0.873†

NMI 0.173 0.534 0.409 0.471 0.346 0.601 0.250 0.312 0.306 0.156 0.451 0.357 0.705†

ER
RI 0.756 0.772 0.805 0.775 0.770 0.841 0.734 0.925 0.885 0.764 0.821 0.867 0.968†

NMI 0.336 0.399 0.400 0.406 0.392 0.722 0.349 0.775 0.672 0.346 0.478 0.594 0.906†

HM
RI 0.627 0.635 0.697 0.685 0.628 0.719† 0.636 0.609 0.599 0.613 0.608 0.607 0.651

NMI 0.067 0.103 0.168 0.265 0.112 0.398† 0.125 0.044 0.034 0.051 0.053 0.039 0.175

Li
RI 0.892 0.917 0.911 0.913 0.907 0.941† 0.855 0.904 0.922 0.896 0.881 0.886 0.941†

NMI 0.577 0.620 0.622 0.622 0.602 0.724 0.353 0.542 0.654 0.464 0.373 0.400 0.761†

NA
RI 0.882 0.833 0.853 0.876 0.714 0.976† 0.754 0.817 0.836 0.700 0.792 0.809 0.876

NMI 0.698 0.679 0.643 0.643 0.043 0.855† 0.313 0.523 0.558 0.222 0.513 0.565 0.657

PE
RI 0.424 0.191 0.817 0.755 0.806 0.892† 0.730 0.765 0.746 0.763 0.789 0.726 0.858

NMI 0.011 0.066 0.491 0.402 0.425 0.614† 0.217 0.290 0.102 0.278 0.331 0.026 0.537

PD
RI 0.929 0.922 0.935 0.881 0.885 0.946 0.845 0.941 0.936 0.873 0.857 0.818 0.950†

NMI 0.713 0.693 0.738 0.605 0.563 0.826† 0.273 0.776 0.749 0.537 0.339 0.090 0.822

SW
RI 0.591 0.762 0.733 0.695 0.733 0.771† 0.467 0.410 0.410 0.457 0.589 0.467 0.724

NMI 0.350 0.536 0.559 0.466 0.556 0.609† 0.188 0.213 0.213 0.193 0.187 0.248 0.554

UW
RI 0.883 0.913 0.920 0.893 0.879 0.913 0.795 0.865 0.893 0.817 0.796 0.779 0.927†

NMI 0.570 0.710 0.713 0.582 0.558 0.728 0.233 0.511 0.614 0.322 0.215 0.244 0.731†

Avg
RI 0.741 0.760 0.822 0.801 0.790 0.876† 0.724 0.770 0.776 0.726 0.762 0.745 0.875

NMI 0.468 0.515 0.553 0.513 0.457 0.704† 0.312 0.480 0.480 0.306 0.379 0.366 0.698

AR (URL) / / / / / / / 3.33 3.56 4.71 4.06 4.33 1.00†

AR (All) 7.83 6.15 5.23 6.46 7.35 2.17 10.60 7.38 7.12 10.62 8.98 9.19 1.92†

W/T/L 22/0/2 22/0/2 21/0/3 21/1/2 22/0/2 12/3/9 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 /

p-val 0.0000 0.0000 0.0000 0.0002 0.0000 0.9169 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 /

Table 6: Performance comparison onMTS anomaly detection.

𝑤 represents the length of the sliding window and the best

results are highlighted in bold. The underlined value indi-

cates significant difference under a statistical level of 0.05.

Dataset w IF-s IF-p SN-AD TS2Vec T-Loss TNC TS-TCC TST CSL

SMAP

25 0.1040 0.2146 0.2408 0.2680 0.3479 0.3111 0.3383 0.2279 0.4088

50 0.0982 0.2090 0.2253 0.3096 0.3834 0.3089 0.3662 0.2399 0.3989

75 0.0377 0.2149 0.2195 0.2365 0.3806 0.3133 0.3578 0.2383 0.3964

100 0.0890 0.2166 0.2744 0.2834 0.3862 0.3218 0.3501 0.2511 0.4049

MSL

25 0.0212 0.2235 0.2408 0.1557 0.2300 0.2097 0.2420 0.2104 0.3312

50 0.0160 0.2375 0.2571 0.1422 0.2563 0.2485 0.2744 0.2292 0.3725

75 0.0092 0.2522 0.2796 0.1588 0.2661 0.2513 0.2898 0.2474 0.3813

100 0.0077 0.2653 0.2907 0.1753 0.2771 0.2629 0.3074 0.2645 0.4033

SMD

25 0.2453 0.1664 0.1807 0.2035 0.1685 0.1754 0.1870 0.1394 0.2723

50 0.2666 0.1799 0.1981 0.2345 0.1955 0.1867 0.2140 0.1416 0.2777

75 0.2715 0.1963 0.1953 0.2659 0.2211 0.2070 0.2327 0.1704 0.2782

100 0.2912 0.2152 0.2101 0.2846 0.2472 0.2291 0.2454 0.1859 0.2784

ASD

25 0.1916 0.1878 0.1403 0.2978 0.3223 0.1591 0.1938 0.1351 0.3272

50 0.2149 0.2368 0.2084 0.3412 0.3504 0.1812 0.2324 0.1933 0.3799

75 0.2391 0.2782 0.2488 0.3655 0.3544 0.2367 0.2844 0.2398 0.4094

100 0.2585 0.3193 0.3062 0.3735 0.3449 0.2945 0.2679 0.2926 0.4349

Avg F1 0.1476 0.2258 0.2323 0.2560 0.2957 0.2436 0.2740 0.2129 0.3597

AR 6.69 6.38 5.63 4.56 3.50 6.13 3.63 7.38 1.13

W/T/L 15/0/1 16/0/0 16/0/0 15/0/1 16/0/0 16/0/0 16/0/0 16/0/0 /

p-val 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 /

Anomaly Detection. In Table 6, we can see that CSL outperforms

the baselines in every setting, except for SMDwith a window length

of 100, where CSL is slightly inferior to IF-s and TS2Vec. This may

indicate that these two algorithms are more effective in detecting

outliers with long SMDwindows. For each dataset, the performance

of all methods tend to improve as the sliding window size increases,

because larger windows allow more normal observations to be seen

to better detect the outliers. CSL achieves superior performance on

the MSL dataset, outperforming the second-best TS-TCC by more

than 30% on each window size. Although the difference in perfor-

mance is not as large on the other three datasets, CSL is almost

always the best and significantly outperformed each competitor.

This indicates that CSL has an outstanding ability to identify anom-

alies. We also observe that the second-best method is different for

each dataset, with T-Loss on SMAP, TS-TCC on MSL, and IF-s on

SMD, while TS2Vec and T-Loss are the second-best methods with

about the same performance on ASD. The reason may be that these

URL algorithms are developed based on specific assumptions that

may fail in other domains. In contrast, CSL exhibits more general

capabilities. The variant of ShapeNet, i.e., SN-AD, does not achieve

competitive performance like in classification, showing again the

limitation of ShapeNet in terms of task generality.

Finally, we visualize the unsupervised learned representation

of ERing test data using t-SNE [50]. We compare CSL with the

five URL baselines and the variant of ShapeNet which excludes the

supervised feature selection. As Fig. 5 shows, the representation

learned by the proposed CSL forms more separated clusters, which

also suggests representation of lower entropy. This explains why

CSL can outperform the competitors on downstream analysis tasks.

5.3 Ablation Study

To validate the effectiveness of the key components in CSL, we

conduct ablation studies using classification tasks on all 30 UEA

datasets. Due to space limitations, only the statistical results are

reported here. The best value in a comparison is highlighted in bold

and underlining indicates a significant difference under a statistical

level of 0.05. The results are discussed as follows.

394



Table 7: Effectiveness of multi-scale shapelets.

Statistic Short scale only Long scale only Better scale Both (CSL)

Avg Acc/AR 0.710/2.88 0.687/2.98 0.723/2.12 0.735/2.02

W/T/L 19/4/7 21/3/6 13/6/11 /

p-val 0.0054 0.0001 0.1791 /

Table 8: Effectiveness of diverse (dis)similarity measures.

Statistic Euclidean only Cosine only Cross only All (CSL)

Avg Acc/AR 0.652/3.33 0.698/2.93 0.709/2.05 0.735/1.68

W/T/L 25/4/1 24/1/5 17/2/11 /

p-val 0.0000 0.0001 0.0426 /

Table 9: Effectiveness of multi-grained contrasting andmulti-

scale alignment.

Statistic w/o L𝐶 w/o L𝐹 w/o L𝐴 All (CSL)

Avg Acc/AR 0.720/2.38 0.708/3.33 0.709/2.92 0.735/1.37

W/T/L 20/5/5 27/3/0 26/4/0 /

p-val 0.0006 0.0000 0.0000 /

Effectiveness of components in Shapelet Transformer. There

are two major designs within the Shapelet Transformer, including

using the shapelets of different scales (lengths) and the diverse

dis(similarity) measures. As they improve the representation in

orthogonal directions, we assess their effectiveness individually.

(1) Multi-scale shapelets. ST contains shapelets ranging from

short to long. Here we compare CSL with its three variants: short

scale only (where the shapelet length ranges from 0.1𝑇 to 0.4𝑇 ),
long scale only (from 0.5𝑇 to 0.8𝑇 ) and the better of the two. To make

a fair comparison, we fix the embedding dimension 𝐷𝑟𝑒𝑝𝑟 and the

number of scales 𝑅 for all experiments. The results are shown in Ta-

ble 7. Both the short- and long-scale variants perform much worse

than CSL. Even the best of the two variants still performs slightly

worse than CSL. These results demonstrate the necessity of using

shapelets with a wider range of time scales.

(2) Diverse (dis)similarity measures. To investigate the role of the

dis(similarity) measures in the Shapelet Transformer, we compare

our CSL with its three variants, i.e., separately using one measure

of the Euclidean norm, cosine similarity, and cross correlation. The

results are summarized in Table 8. We can see that the cross cor-

relation is the best performer among the three single measures,

while the Euclidean norm variant using the original definition of

shapelet is the worst. This validates our hypothesis that the Eu-

clidean norm-based shapelet has limitations in representing time

series. All three variants perform much worse than CSL with the p-

values less than 0.05. This shows the need to combine the different

types of measures in the shapelet-based MTS representation.

Effectiveness of components in loss function. There are three

terms in our loss function, i.e., coarse-grained contrastive loss L𝐶 ,

fine-grained contrastive loss L𝐹 =
∑𝑅
𝑟=1 L𝐹,𝑟 , and multi-scale align-

ment loss L𝐴 . We investigate the effect size of each term by remov-

ing them one by one. As we can see in Table 9, CSL is significantly

better than the variant without the term L𝐹 or L𝐴 , which proves

the importance of these two components. In contrast, removing the

coarse-grained loss L𝐶 has the least impact. This may imply that,

when the representations on each time scale have been sufficiently

trained and aligned, the joint version is already near-optimal, thus

the coarse-grained contrasting can no longer lead to a huge (but

still statistically significant) improvement like the other two terms.

Figure 6: Study of the multi-grained contrasting and the

multi-scale alignment on UWaveGestureLibrary. Dashed line

corresponds to the joint embedding in R𝐷𝑟𝑒𝑝𝑟 with multiple

scales and bar corresponds to embedding at each single scale.

Table 10: Effectiveness of the data augmentation library.

Statistic w/o 𝐽 (𝒙) w/o 𝐶 (𝒙) w/o 𝑇𝑊 (𝒙) w/o 𝑄 (𝒙) w/o 𝑃 (𝒙) All (CSL)

Avg Acc/AR 0.715/3.63 0.716/3.70 0.707/4.52 0.712/3.88 0.718/3.28 0.735/1.98

W/T/L 19/7/4 21/7/2 24/3/3 23/5/2 19/7/4 /

p-val 0.0004 0.0003 0.0001 0.0001 0.0006 /

We further explore how multi-grained contrasting and multi-

scale alignment work using a case study in Fig. 6. We find that

removing L𝐹 decreases the representation quality of every single

scale (the orange bar), and thus has a great negative impact on

the joint embedding (the orange line). Similar phenomena can be

observed for L𝐴 . It indicates that L𝐹 and L𝐴 improve the final per-

formance through improving the quality of each scale. Compared to

the variants without L𝐶 (the green bar), the representation quality

of each single scale is balanced with the loss (the red bars), saying

that the quality of scale 1, 4, 5 and 8 is improved, while the quality

of scale 2 and 7 is a little decreased. As a result, the joint embedding

learned using L𝐶 (the red line) is better than that without the loss

(the green line). It validates the hypothesis in Section 4.3 that L𝐶

can coordinate the multiple scales to improve the joint embedding.

From the above exhaustive analysis, we can conclude that all the

components included in the loss function of CSL are necessary.

Effectiveness of the data augmentation library. We remove the

methods in the data augmentation library one by one to evaluate

their effectiveness. As can be seen in Table 10, the variant without

time warping get the lowest average ranking (4.52), implying that

removing time warping has a broader negative effect among the

30 datasets than the other data augmentation methods. The data

augmentation libraries without each of the other four methods have

a close average ranking. In contrast, the complete version has the

highest average ranking (1.98), suggesting that the performance of

CSL can probably be further improved when more types of data

augmentation approaches are included in the library. This is an

interesting finding and may imply a general data-independent data

augmentation scheme for unsupervised representation learning of

MTS. We leave the further exploration in our future work.

5.4 Sensitivity Analysis

We perform sensitivity analysis to study the key parameters, includ-

ing the number of shapelet scales 𝑅 (default 8), the minimum and

maximum lengths of the shapelets 𝐿𝑚𝑖𝑛 (default 0.1𝑇 ) and 𝐿𝑚𝑎𝑥

(default 0.8𝑇 ), the decay rate 𝛼 (default 0.5), and the regularization

coefficients 𝜆 (default 0.01) and 𝜆𝑆 (default 1).

Similar to the setting in Section 3.2, given 𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥 and 𝑅, the
shapelet lengths are simply set to the evenly spaced numbers over
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(a) # Scales 𝑅. (b) Min. length 𝐿𝑚𝑖𝑛 . (c) Max. length 𝐿𝑚𝑎𝑥 .

(d) Decay rate 𝛼 . (e) L𝐴 importance 𝜆. (f) L𝑆 importance 𝜆𝑆 .

Figure 7: Sensitivity analysis of the key parameters.

Figure 8: Accuracy ofOSCNN, fully supervised andfine-tuned

CSL w.r.t. the ratio of labeled data on UWaveGestureLibrary.

[𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥 ], i.e., 𝐿𝑟 = 𝐿𝑚𝑖𝑛 + (𝑟 − 1) 𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
𝑅−1 ( 𝑟 ∈ {1, . . . , 𝑅}).

The performance is evaluated using classification accuracy. The

results on three diverse UEA datasets are shown in Fig. 7 and the

similar trends can be observed on the other datasets. Please note that

the performance on AtrialFibrillation seems sensitive just because

the dataset has only 15 testing samples, the minimum number

among the 30 UEA datasets, which is a corner case of our evaluation.

We discuss the results in detail as follows.

The sensitivity analysis of 𝑅. To capture multi-scale information,

the number of scales 𝑅 cannot be too small. But too large 𝑅 will

cause a small number of shapelets𝐾 under a fixed representation di-

mension 𝐷𝑟𝑒𝑝𝑟 , which can also decrease the representation quality.

As the result in Fig. 7a shows, the model is relatively more sensitive

to small values of 𝑅 than larger values, while a moderate value of 8

can lead to good overall performance among the datasets.

The sensitivity analysis of 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 . From Fig. 7b-7c, we

can see that for UWaveGestureLibrary, the best choice of 𝐿𝑚𝑖𝑛 is

about 0.4𝑇 and the values of 0.8𝑇 -0.9𝑇 are the best for 𝐿𝑚𝑎𝑥 , which

indicates that the long-term features can be more effective than

the short-term ones. For ArticularyWordRecognition, the relatively

small values of 𝐿𝑚𝑖𝑛 (0.1𝑇 -0.2𝑇 ) and large values of 𝐿𝑚𝑎𝑥 (0.8𝑇 -
0.9𝑇 ) are better, showing the importance of both short- and long-

term features. While on the AtrialFibrillation dataset, 𝐿𝑚𝑖𝑛 = 0.1𝑇
and 0.8𝑇 -0.9𝑇 for 𝐿𝑚𝑎𝑥 are empirically the best choice. Overall, the

default settings of 𝐿𝑚𝑖𝑛 = 0.1𝑇 and 𝐿𝑚𝑎𝑥 = 0.8𝑇 can be decent for

different datasets without any tunning (also validated in Section 5.3),

while one can manually optimize them for further improvement.

The sensitivity analysis of 𝛼 . As the result shown in Fig. 7d, our

model is more sensitive to the small values of the decay rate 𝛼 than

the large values for the UWaveGestureLibrary and AtrialFibrillation

datasets, and the opposite for ArticularyWordRecognition. Overall,

(a) Time series of the four classes

and two shapelets with different

lengths and (dis)similarity mea-

sures learned by CSL.

(b) The two-dimensional

representations of all

time series encoded using

the two learned shapelets.

Figure 9: Explanation of the shapelets learned by CSL.

our model is less sensitive to 𝛼 than the other parameters, and a

moderate value around 0.5 is better for different datasets.
The sensitivity analysis of 𝜆 and 𝜆𝑆 . As shown in Fig. 7e, by

varying 𝜆 from 1 to 0.0001, we observe that our model achieves

good performance among different datasets when 𝜆 is around 0.01.
Similarly, we vary 𝜆𝑆 from 100 to 0.01. The result in Fig. 7f indi-

cates that our model is more robust to the larger values of 𝜆𝑆 (1 to

100) for UWaveGestureLibrary and the opposite for AtrialFibrilla-

tion (where the model is more sensitive when 𝜆𝑆 > 1). Overall, a

moderate value around 1 can be a good choice for different datasets.

5.5 Study of Partially Labeled Classification

To further demonstrate the superiority of our CSL, we perform

a case study on UWaveGestureLibrary under a practical setting

of partially labeled MTS classification. Specifically, we compare

CSL with the best-performing supervised OSCNN on the dataset

where only a portion of the randomly selected data is labeled. For

CSL, we first use all the data to train the Shapelet Transformer

without using labels. Then, we append a linear classifier on top of

the representations, and fine-tune the encoder and linear layer using

the available labeled data by minimizing the standard cross-entropy

loss as used in OSCNN. In contrast, OSCNN is supervisedly trained

using the same labeled data (fully supervised). For comparison, we

also train a CSL model in the same fully supervised way as OSCNN.

As Fig. 8 shows, the fully supervised CSL performs very closely

to OSCNN. The fine-tuned CSL consistently outperforms the two

competitors, especially when the proportion of labeled data is small.

Taking advantage of URL which can “pre-train” the encoder using

all available data regardless of annotations, the fine-tuned CSL uses

only 20% labeled data to achieve accuracy comparable to the fully

supervised OSCNN and CSL trained with 50% labeled data. The

results show the superiority of our URL method in partially-label

settings, compared to the traditional fully supervised techniques.

5.6 Study of the Learned Shapelets

To provide an intuitive understanding of the features CSL extracts,

we study the learned shapelets using an easy-to-understand Ba-

sicMotions problem from UEA archive. The time series are sensor

records of four humanmotions, i.e., Standing,Walking, Running and

Badminton. Each sample has six dimensions and of length 𝑇 = 100.

We plot four time series of the four classes and two shapelets

with different lengths and measures learned by our CSL (see Fig. 9a).

Shapelet 1 is of length 30 and encodes the samples using Euclidean
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Table 11: Accuracy and SVM training time on long time series.

Dataset
Raw values Unsupervised learned representation

Acc Time TS2Vec T-Loss TNC TS-TCC TST CSL CSL (Speedup)

BH 0.732 0.6204s 0.712 0.732 0.732 0.658 0.720 0.732 0.0038s (163x)

CD 0.482 0.4369s 0.520 0.695 0.549 0.629 0.625 0.712 0.0031s (141x)

DA 0.240 0.1968s 0.193 0.400 0.220 0.286 0.307 0.373 0.0012s (164x)

US 0.210 205.7195s 0.155 0.600 0.112 0.379 0.183 0.692 1.2834s (160x)

distance (Green). Shapelet 2 has a length of 40 and is used in con-

junction with the cross-correlation function for encoding (Orange).

The shapelets are matched to the most similar subsequences for

each of the time series samples. Note that CSL uses multivariate

shapelets to jointly capture the information among different vari-

ables, where each shapelet has the same dimensions as the time

series. The two shapelets encode each time series sample into a

two-dimensional representation (Fig. 9b), where each axis is the

(dis)similarity between the shapelet and the matching subsequence

according to Eq. (3).

From Fig. 9, we observe that the representation based on Shapelet

1 (X-axis) can distinguish the Standing motion while the other three

motions can be effectively classified by the features extracted using

both shapelets. Thus, the shapelets can be seen as the prototypes

of some classes and the representations are explained as the degree

the shapelets exist in the time series, which is intuitive to under-

stand. Our proposal not only extends the original shapelet which

is designed only for supervised classification to general-purpose

URL, but also retains its benefit in terms of explainability or inter-

pretability [58]. Although the interpretation method is ad-hoc, it

remains a nice property of the shapelet compared to the complex

neural networks which are harder to explain [37].

5.7 Study of Long Time Series Representation

We assess the ability of the URL methods on long time series rep-

resentation. Four datasets from the Time Series Machine Learn-

ing Website [2] are used including BinaryHeartbeat (BH), Cats-

Dogs (CD), DucksAndGeese (DA) and UrbanSound (US). The series

lengths of the four datasets are 18530, 14773, 236784 and 44100

respectively and the other statistics can be found on the website.

Following Section 5.1, we train an SVM using either the unsuper-

vised learned representation or the raw values of the training data,

and report the test accuracy and the SVM training time (marked in

italics) in Table 11. In terms of accuracy, CSL performs the best on

three data sets and the second-best on DA, showing its higher abil-

ity in long series representation. T-Loss is also well-performed, but

is still inferior to CSL on CD and US. TS2Vec and TST cannot handle

long series due to high space complexity, so they have to shorten

the raw data by truncation or subsampling following [59], which

may cause information loss and result in their low performance.

Compared to analysis on the raw values, using the representation

learned by CSL can not only improve the accuracy, but also achieve

more than 140x of speedups for the SVM training. This indicates

the superiority of the proposed CSL in long time series analysis.

5.8 Running Time Analysis

Although our main goal is to improve the representation quality

of URL, we show that the running time of the proposed CSL is

also less than or comparable to the URL baselines. We first assess

the accuracy with respect to the training time using two medium-

sized datasets. As shown in Fig. 10, CSL and TS2Vec achieve the

(a) HandMovementDirection. (b) Handwriting.

Figure 10: Accuracy w.r.t. total training time.

(a) Time w.r.t. 𝑁 . (b) Time w.r.t. 𝐷 . (c) Time w.r.t.𝑇 .

Figure 11: Training time per epoch of varying input size

(𝑁 ), dimension (𝐷) and series length (𝑇 ) on InsectWingbeat,

DuckDuckGeese and EigenWorms respectively.

same or higher accuracy using much less time, showing that they

are faster to train than the other URL methods, while CSL is also

faster than TS2Vec. Next, we evaluate the training time per epoch

on InsectWingbeat, DuckDuckGeese and EigenWorms, the UEA

datasets with the largest input size, dimension and series length.

The results are shown in Fig. 11a-11c respectively. TS-TCC runs

fast in most cases. TS2Vec is also time-efficient, but it cannot scale

to large length 𝑇 due to high memory consumption (Fig. 11c). TST

is slower than CSL for high-dimensional time series (Fig. 11b) and

runs out of memory for large 𝑇 (Fig. 11c). T-Loss and TNC, though

have smaller time complexity, are much slower than the others

with considerably large 𝑁 , 𝐷 and𝑇 . The reason is that they consist

of many sequential operations which cannot be sped up with GPUs.

CSL is fairly efficient among the URL methods in terms of running

time per epoch. More importantly, CSL can be faster to train as we

have illustrated above as it converges using less number of epochs.

Besides, we observe that the time spent on data augmentation (CSL-

Aug) is very little during the CSL training.

6 CONCLUSION

This paper presents a novel URL framework named CSL, which

leverages contrastive learning for MTS-specific representation. Par-

ticularly, we design a unified shapelet-based encoder and an objec-

tive with multi-grained contrasting and multi-scale alignment to

capture information in various time ranges. We also build a data

augmentation library including diverse types of methods to im-

prove the generality. Extensive experiments on tens of real-world

datasets demonstrate the superiority of CSL over the baselines on

downstream classification, clustering, and anomaly detection tasks.
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