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ABSTRACT
This paper studies a new problem of relation enrichment. Given a
relation 𝐷 of schema 𝑅 and a knowledge graph𝐺 with overlapping
information, it is to identify a small number of relevant features
from 𝐺 , and extend schema 𝑅 with the additional attributes, to
maximally improve the accuracy of resolving entities represented
by the tuples of 𝐷 . We formulate the enrichment problem and show
its intractability. Nonetheless, we propose a method to extract
features from𝐺 that are diverse from the existing attributes of 𝑅,
minimize null values, and moreover, reduce false positives and false
negatives of entity resolution (ER) models. The method links tuples
and vertices that refer to the same entity, learns a robust policy
to extract attributes via reinforcement learning, and jointly trains
the policy and ER models. Moreover, we develop algorithms for
(incrementally) enriching𝐷 . Using real-life data, we experimentally
verify that relation enrichment improves the accuracy of ER above
15.4% (percentage points) by adding 5 attributes, up to 33%.
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1 INTRODUCTION
When we talk about incomplete information, we typically refer
to (null) values and tuples missing from a relation 𝐷 of schema 𝑅.
However, for an application at hand, schema 𝑅 may be incomplete;
it “may not have all attributes required for analysis” [131]. As a
consequence, the tuples in 𝐷 do not have enough information for
the application, e.g., causal inference [131], aggregate SQL queries
[84, 130] and movie popularity classification [33]. As exemplified
in [131], a data analyst in the WHO organization aimed to estimate
the effect of a mask policy on the coronavirus mortality rate, but
found critical attributes (e.g., weather that affects people’s willing-
ness to wear masks) not included in the data [131].
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Table 1: An Example of Person Table
tid name gender email address city age spouse_name eid
𝑡1 James Davis M james@example.com 18 Elmwood Rd Chicago 45 Ava Davis 𝑒1
𝑡2 John Wilson M john@example.com 18 Maple Avenue Houston null Ava Wilson 𝑒2
𝑡3 Ava Davis F ava@example.com 12 Pine Lane Boston 36 John Wilson 𝑒3
𝑡4 Ava Wilson F a.Wat@example.com 18 Maple Avenue Houston 36 John Wilson 𝑒3
𝑡5 Ava Davis F ad123@example.com 18 Elmwood Rd Chicago 42 James Davis 𝑒4

Attributes are missing from schema 𝑅 for several reasons [91,
114]. (1) People may lack full knowledge of desired functionality
in large-scale applications. (2) The application world constantly
evolves, necessitating enhancements. (3) The scale of tasks often
requires incremental design and commissioning. Regardless of the
reasons, relation𝐷 oftenmisses features needed for our application.

In this paper, we focus on entity resolution (ER) as our target
application, which has been commonly used in, e.g., e-commerce
and financial institutions. As an example, the insurance industry
employs ER as a routine operation in detecting identity fraud, which
was responsible for over $17 billion stolen from U.S. consumers in
2017 [1]. As reported in [3], fraudsters forge fake identities. Such a
fraud is hard to detect, since it can use information stolen from a real
person, and a mix of real and synthetic data [6]. There are usually
no unique identities as references, since collecting them is “time-
consuming, adds friction to the customer journey, and is also an easy
check to bypass” [12]. Similar problems also exist in card fraud (e.g.,
duplicate applications for gift/credit cards) or money laundering
(e.g., move money from one account into another) [5, 111].

To detect fraud, the insurance industry has been advocating “to
incorporate external information into the identity verification pro-
cess” [6]. This has been practiced by, e.g., SEON [13] and SIFT [14].

Example 1: Consider Table 1 with 5 tuples 𝑡1-𝑡5 for 4 persons 𝑒1-
𝑒4, who are applying for promotional gift cards, where each person
is limited to one card (e.g., eGift of Starbucks [16]). The tuples have
a schema with attributes name, gender, email, address and city; the
store allows one person to have, e.g., multiple different emails.

A not-so-sophisticated ER method AER may predict that 𝑡3 and
𝑡5 are the same person (a false positive, FN), since they have exactly
the same name. It may also miss the true match of 𝑡3 and 𝑡4 (a
false negative, FN), due to different names, emails and addresses,
although Ava Wilson was named Ava Davis before her marriage,
and she issued a duplicate application using her old identity.

Fortunately, additional attributes can help us reduce FPs/FNs of
ER. (a) As remarked in [131], age or ethnicity are often missing in
person datasets. If additional attribute age is available, it provides
a strong evidence for AER to tell that 𝑡3 and 𝑡5 are mismatched,
since they have different ages. (b) If we further enrich the schema
with attribute spouse_name, (e.g., by social networks [12]), AER
can identify 𝑡3 and 𝑡4, since they are married to the same person. □
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Missing attributes are as damaging as missing data, but it has
not received much attention. While there has been a host of work
on missing data imputation [25, 26, 29, 40, 49, 50, 54, 55, 66, 77, 100,
105, 116, 128, 129], no prior work has systematically studied how to
enrich incomplete schema in order to improve ER accuracy. They
either do not target downstream applications or is not developed
for ER and thus, miss distinguishing attributes for ER (see Section7).

To enrich dataset 𝐷 of schema 𝑅 for ER, we can extract informa-
tion from external sources e.g., text [63, 64], information space [43],
XML [126], data warehouse [22] and Web [59]. In fact, knowledge
enrichment has been practiced in medicine [112], network [133],
e-commerce [15], recommendation [113] and text generation [132].
Among them, knowledge graphs (KGs) are particularly promising
for ER. KGs link related entities and disambiguate entities with sim-
ilar names [17]; moreover, their attributes are already reconciled
and typically highly informative [130, 131], making it feasible to
improve the ER accuracy. In particular, financial institutions have
been using KGs to detect various types of fraud [5]; indeed, “using a
KG for ER, the company can easily detect clusters of fake claims” [3].

In light of this, we study relation enrichment for ER by refer-
encing a KG𝐺 . We consider reliable 𝐺 , i.e., a KG that is relatively
clean and complete. Several popular KGs are in place, e.g., general-
purpose Wikidata [9] and domain-specific DRKG [71]. The issue is
highly nontrivial. It requires us to link tuples in 𝐷 with vertices in
𝐺 for enrichment. Worse still, a KG typically maintains all sorts of
properties of entities and their links to provide a comprehensive pic-
ture. If we enrich schema 𝑅 with all such properties, it may hamper
the accuracy of ER. As evidenced by [34], only relevant attributes
contribute positively to identifying true positives, and “attributes
containing null values may affect negatively the ER result”. This
motivates us to enrich schema with bounded relevant features.

Moreover, real-life datasets and KGs constantly change, e.g.,
Wikidata publishes hundreds of live updates every minute [8] and
the IMDB we used is refreshed daily [11]. In particular, financial
institutions often require real-time detection of, e.g., fraud in the
online payment of credit cards [18]. It is too costly to conduct rela-
tion enrichment starting from scratch in response to the updates.
These motivate the need for incremental enrichment.

To make the idea work, several questions have to be answered.
What distinguishing features should we add to 𝑅 to best improve
the ER accuracy? For a tuple 𝑡 in𝐷 , where can we find the additional
attributes from KG𝐺 to complement 𝑡? How can we incrementally
maintain the enriched 𝐷 in response to updates to 𝐷 and 𝐺?

Contributions & Organization. This paper studies relation en-
richment for improving the accuracy of ER models. Consider a
relation 𝐷 of schema 𝑅 and assume a reliable knowledge graph𝐺 .
(1) An enrichment scheme (Section 3). We formulate the problem of
relation enrichment for ER. Given a black-box ER model AER and
a parameter𝑚, it is to extract at most𝑚 features from knowledge
graph 𝐺 and extend schema 𝑅 with the features as additional at-
tributes, in order to maximize the accuracy of AER. We separate
schema enrichment from data enrichment, and show that the former
is NP-complete and the latter is in PTIME. This said, we propose a
scheme ENRICH for enriching both schema 𝑅 and relation 𝐷 .
(2) Schema enrichment (Section 4). We propose a method for en-

riching schema 𝑅 for ER under ENRICH. We develop a method
for heterogeneous entity resolution (HER) to identify top-ranked
matches (tuples and vertices) across relation 𝐷 and KG𝐺 . We learn
a policy via reinforcement learning to extract at most𝑚 features
that extends 𝑅 to schema 𝑅𝐺 . Each feature is fetched by a path in𝐺 .
We pick features that are as diverse from the existing attributes of
𝑅 as possible, yield as few null values as possible, and maximumly
improve the accuracy of ER. To make the policy robust to different
data distributions, we jointly train the policy and the model AER.
(3) Data enrichment (Section 5). Under ENRICH, we develop algo-
rithms for enriching the relation 𝐷 to an instance 𝐷𝐺 of schema
𝑅𝐺 . We support both a batch mode and an incremental mode. In the
batch mode, we extend each tuple 𝑡 of 𝐷 by identifying vertices 𝑣 in
𝐺 that refer to the same entity as 𝑡 via HER, traversing paths from
𝑣 to extract the additional features, and adding the features to 𝑡 . In
the incremental mode, we dynamically maintain 𝐷𝐺 in response to
updates to both relation 𝐷 and graph 𝐺 . To scale with large 𝐺 and
𝐷 , we parallelize the algorithms and show their parallel scalability,
i.e., they guarantee to reduce runtime when more resources are
used [81]. We defer the parallelization to [10] for the lack of space.

(4) Experimental study (Section 6). Using real-life data and bench-
marks, we empirically find the following. (a) Relation enrichment
improves the accuracy of ER models by 15.4% on average, up to 33%,
by adding 5 attributes. (b) It is on average 5.2% (resp. 14.6%) more
accurate than ML models for feature augmentation (resp. feature
selection), up to 18.2% (resp. 32.6%). (c) Batch enrichment is 5.94X
faster than the baselines on IMDB on average. (4) The incremental
method beats the batch one when updates to 𝐷 and 𝐺 are up to
20%, and is 6.28X faster when updates |Δ𝐺 | = 5%|𝐺 |.

We discuss related work in Section 7 and future work in Section 8.

2 PRELIMINARIES
In this section, we review basic notations, ER and HER.
Relations. Consider a relation schema 𝑅 = (id, 𝐴1, . . . , 𝐴𝑛), where
𝐴𝑖 is an attribute (𝑖 ∈ [1, 𝑛]), and id is an entity id as introduced by
Codd [39], such that each tuple of 𝑅 represents an entity of type 𝜏
with identity id. A relation 𝐷 of 𝑅 is a set of tuples of schema 𝑅.
Knowledge graphs. Following [68], we represent a knowledge graph
as 𝐺 = (𝑉 , 𝐸, 𝐿). Here (a) 𝑉 is a finite set of vertices representing
entities, (b) 𝐸 ⊆ 𝑉 ×𝑉 consists of edges representing relationships
between entities; and (c) for each vertex 𝑣 ∈ 𝑉 , 𝐿(𝑣) is its feature or
value, and for each edge 𝑒 ∈ 𝐸, 𝐿(𝑒) is its label. Between a pair (𝑣, 𝑣 ′)
in 𝑉 , there are possibly multiple edges carrying distinct labels.

A path 𝜌 from a vertex 𝑣0 in graph 𝐺 is 𝜌 = (𝑣0, 𝑣1, . . . , 𝑣𝑙 ) such
that (𝑣𝑖−1, 𝑣𝑖 ) is an edge in 𝐸 for 𝑖 ∈ [1, 𝑙]. The length of 𝜌 is the
number 𝑙 of edges on 𝜌 . A path is simple if each vertex appears on 𝜌
at most once. We consider simple paths, simply referred to as paths.

Entity resolution. Given a relation 𝐷 , entity resolution (ER) is to
identify all pairs of tuples in 𝐷 that refer to the same real-life entity.
It returns a set of pairs (𝑡1, 𝑡2) of tuples of 𝐷 that are identified as
matches. If 𝑡1 does not match 𝑡2, (𝑡1, 𝑡2) is referred to as a mismatch.

A number of ER methods have been developed, based on ML [23,
45, 74, 86, 95, 102, 134], logic rules [24, 27, 32, 48, 61, 79, 127] and hy-
brid of the two [28, 41, 56]. We focus onML-based ERmodels, which
take quadratic-time (after the relevant ML models are trained).
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Figure 1: An example knowledge graph

Heterogeneous entity resolution (HER). HER is to identify entities
across a relation and a graph. It is defined as a mapping 𝑓HER that
given a graph𝐺 and a set 𝐷 of tuples of schema 𝑅, computes a set:

𝑓HER (𝐷,𝐺) = {(𝑡, 𝑣) | 𝑡 ∈ 𝐷, 𝑣 ∈ 𝑉 in 𝐺, 𝑡 ⇒ 𝑣}.
Here 𝑡 ⇒ 𝑣 denotes that tuple 𝑡 and vertex 𝑣 make a match, i.e., 𝑡
and 𝑣 refer to the same entity. For each 𝑡 ∈ 𝐷 , there can be multiple
vertices 𝑣 in𝐺 that match 𝑡 . We refer to 𝑓HER as the HER mapping.

Several methods are in place for HER, e.g., rule-based JedAI [98],
parametric simulation [51], and ML-based Silk [72], MAGNN [58]
and EMBLOOKUP [19]. In particular, it is in 𝑂 ( |𝐷 | |𝐺 |) time to com-
pute allHERmatches across𝐷 and𝐺 by parametric simulation [51].

We assume that schema 𝑅 has enough information for a well-
designed HER mapping 𝑓HER to map tuples of 𝑅 to entities in 𝐺 .
Example 2: Consider a KG𝐺 in Figure 1 for tuples in Table 1 (e.g.,
derived from social networks [65]), where 𝑡𝑖 matches 𝑣𝑖 (𝑖 ∈ [1, 5]).

HER differs from ER. (a) It identifies tuples and vertices across
a relation and a graph, while ER matches tuples in a relation; (b) an
attribute in 𝑡 may map to a path in𝐺 , e.g., city of 𝑡2 vs. 𝜌 = (𝑣2, 𝑣11,
𝑣8) in 𝐺 ; (c) not every attribute in 𝑡 can find a matching path in 𝐺 ,
and vice versa, e.g., 𝑣4 has occupation “Nurse”, which finds no cor-
responding attribute in Table 1; and (d) 𝑡 and 𝑣 often have different
descriptions for the same property, e.g., gender of 𝑡2 vs. sex of 𝑣2. □

3 A SCHEME FOR RELATION ENRICHMENT
In this section, we first formulate the enrichment problem and
incremental enrichment problem for ER (Section 3.1). We then settle
the complexity of the enrichment problems (Section 3.2). After this,
we propose enrichment scheme ENRICH (Section 3.3).

3.1 Relation Enrichment Problem
Given a relation schema 𝑅 = (𝐴), where𝐴 is a set (id, 𝐴1, . . . , 𝐴𝑛) of
attributes, consider a relation𝐷 of𝑅, a KG𝐺 , and an ERmodelAER.
Accuracy. We first present how to measure the accuracy improve-
ment on ER models, in terms of Precision, Recall and F1.

Following Codd [39], consider tuples for representing a (count-
ably infinite) set E of real-world entities. For tuples 𝑡 in instance 𝐷
of schema 𝑅 = (𝐴), there exists a mapping 𝑓 from each tuple ID in
𝐷 to E such that 𝑓 (𝑡 .id) = 𝑒 , i.e., for each tuple 𝑡 in 𝐷 , 𝑓 (𝑡 .id) is the
entity represented by 𝑡 (such mapping is usually implicitly assumed
in ER). Then the accuracy of AER on 𝐷 is traditionally measured
in terms of F1 = 2·Precision·Recall

Precision+Recall . Here Precision is the ratio of pairs
of distinct tuples that are correctly identified to all identified tuple
pairs, i.e., Precision =

| { (𝑡,𝑠 ) | 𝑡,𝑠∈𝐷, AER (𝑡,𝑠 )=true, 𝑓 (𝑡 .id)=𝑓 (𝑠.id) } |
| { (𝑡,𝑠 ) | 𝑡,𝑠∈𝐷, AER (𝑡,𝑠 )=true} |

for distinct 𝑡 and 𝑠 , and Recall is the ratio of correctly identified
tuple pairs to all tuple pairs that refer to the same real-world entity,

Figure 2: The workflow of ENRICH

i.e., Recall = | { (𝑡,𝑠 ) | 𝑡,𝑠∈𝐷, AER (𝑡,𝑠 )=true, 𝑓 (𝑡 .id)=𝑓 (𝑠.id) } |
| { (𝑡,𝑠 ) | 𝑡,𝑠∈𝐷, 𝑓 (𝑡 .id)=𝑓 (𝑠.id) } | .

Example 3: Consider Table 1 of schema 𝑅 = (𝐴) = (name, gender,
email, address, city), where 𝐷 has 5 tuples, 𝑡1 [𝐴]-𝑡5 [𝐴], and the
mapping 𝑓 is shown in the table. Here assume that AER makes an
FP prediction and an FN prediction as stated in Example 1. The pre-
cision ofAER on 𝐷 is Precision = 0

1 since the only distinct pair pre-
dicted true by AER is (𝑡3, 𝑡5) (which is a FP). Similarly, Recall = 0

1
since the only true match (𝑡3, 𝑡4) is not identified (due to the FN). □

As shown above, AER on 𝐷 is not accurate, for the lack of at-
tributes. To improve it, we aim to enrich schema 𝑅 = (𝐴) to 𝑅𝐺 =

(𝐴, 𝐵), where 𝐴 copies the attributes of 𝑅, 𝐵 is a set of at most𝑚 at-
tributes extracted from graph𝐺 , and𝑚 is the “budget” for extending
schema 𝑅. Intuitively, we want to extend 𝐷 and create an instance
𝐷𝐺 of schema 𝑅𝐺 , such that for each 𝑡 in𝐷 , we have exactly one en-
riched tuple 𝑡𝐺 ∈ 𝐷𝐺 , where 𝑡𝐺 .id = 𝑡 .id, 𝑡𝐺 [𝐴] = 𝑡 [𝐴] and 𝑡𝐺 [𝐵]
is the partial tuple extracted from𝐺 . We refer to 𝑅𝐺 as the enriched
schema of 𝑅 with𝐺 , and to 𝐷𝐺 as the enriched relation of 𝐷 with𝐺 .
Example 4: Assume that 𝑅𝐺 = (𝐴, 𝐵) where 𝐵 = (spouse_name).
After enriching 𝑅 to 𝑅𝐺 with an additional attribute spouse_name,
the FN (i.e., (𝑡3, 𝑡4)) is reduced, as stated in Example 1, improving
Precision of AER on 𝐷𝐺 to 1

2 , since AER predicts true for both
(𝑡3, 𝑡5) (which is the FP) and (𝑡3, 𝑡4), where only the latter one is
correctly identified. Similarly, Recall is also improved to 1

1 since
the only true match (𝑡3, 𝑡4) in Table 1 is correctly identified. □

We use the difference between the F1 ofAER on𝐷𝐺 and on𝐷 , de-
noted byΔF1 , as improvement ofAER on𝐷 via𝐷𝐺 . The difference of
Precision/Recall can also be used, depending on application needs.
Problems. We now state the enrichment problem for ER modelAER.
◦ Input: 𝑅 = (𝐴), 𝐷 and 𝐺 as above, and a positive integer𝑚.
◦ Output: (a) An enriched schema 𝑅𝐺 = (𝐴, 𝐵) of 𝑅 with 𝐺 such

that 𝑅 is extended with at most𝑚 attributes 𝐵 extracted from
𝐺 ; and (b) an enriched relation 𝐷𝐺 of 𝐷 with 𝐺 .

◦ Objective: To maximize the improvement of AER on 𝐷 via 𝐷𝐺 .
Here ER is conducted by the same AER on both 𝐷 and 𝐷𝐺 .

The enrichment problem can be sub-divided into two problems:
(1) schema enrichment, to deduce enriched schema 𝑅𝐺 , and (2) data
enrichment, to compute enriched relation 𝐷𝐺 after 𝑅𝐺 is in place.

Incremental enrichment problem. Real-life data is constantly
changed by small updates. Consider updates to 𝐷 and𝐺 . Updates to
relation 𝐷 consist of deleted/inserted tuples, denoted by Δ𝐷 ; note
that modifications to a tuple 𝑡 can be regarded as deleting 𝑡 followed
by inserting a tuple with the changed values. Graph updates, de-
noted by Δ𝐺 , consist of edge insertions/deletions. Note that vertex
updates are a dual [80] and can be handled similarly; and the change
to an edge label can be seen as the deletion of an existing edge,
followed by the insertion of a new one with the updated label. We
use𝐺 ⊕Δ𝐺 to denote graph𝐺 updated by Δ𝐺 ; similarly for 𝐷 ⊕Δ𝐷 .
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When 𝐷 and 𝐺 are updated by Δ𝐺 and Δ𝐷 , respectively, the en-
riched relation 𝐷𝐺 has also to be updated. In practice, Δ𝐺 and Δ𝐷
are often small. Hence we want to compute changes Δ𝐷𝐺 such that
𝐷𝐺 ⊕Δ𝐷𝐺 is precisely the enriched relation of𝐷 ⊕Δ𝐷 with𝐺 ⊕Δ𝐺 .
The rational is that when Δ𝐺 and Δ𝐷 are small, so often is Δ𝐷𝐺 ;
hence it is more efficient to compute Δ𝐷𝐺 than to recompute the en-
riched relation of𝐷 ⊕Δ𝐷 with𝐺 ⊕Δ𝐺 starting from scratch. On the
other hand, when Δ𝐺 and Δ𝐷 are small, schema 𝑅𝐺 often remains
unchanged and does not have to be recomputed. Hence we focus
on computing Δ𝐷𝐺 in response to Δ𝐷 and Δ𝐺 after 𝑅𝐺 is in place.

This motivates us to study the incremental enrichment problem.
◦ Input: 𝑅, 𝐷 and 𝐺 as above, and updates Δ𝐷 to 𝐷 and Δ𝐺 to 𝐺 .
◦ Output: Updates Δ𝐷𝐺 such that 𝐷𝐺 ⊕ Δ𝐷𝐺 is equal to the

enriched relation of relation 𝐷 ⊕ Δ𝐷 with graph 𝐺 ⊕ Δ𝐺 .
◦ Objective: Maximumly improveAER on 𝐷 ⊕Δ𝐷 via 𝐷𝐺 ⊕Δ𝐷𝐺 .

Example 5: Continuing with Example 4, if𝑚 = 2, we can further
extend schema 𝑅 of Table 1 to 𝑅𝐺 with attribute age from 𝐺 of
Figure 1, and improve Precision and Recall to 1 (the computation is
similar). However, since age of entity 𝑒2 is missing in𝐺 , the enriched
tuple of 𝑡2 has value null on age. When𝐺 is updated by adding a new
edge 𝑒 = (𝑣2, 𝑣28) with 𝐿(𝑒) = age and 𝐿(𝑣28) = 38 (shown dashed
in Figure 1), incremental enrichment dynamically updates 𝐷𝐺 of
𝑅𝐺 , by setting the age-value of the enriched tuple of 𝑡2 to 38. □

3.2 Complexity of the Enrichment Problems
We next settle the complexity. We show that schema enrichment
is NP-complete; in contrast, data and incremental enrichment are
tractable, i.e., in polynomial time (PTIME), after 𝑅𝐺 is in place.
Theorem 1: (1) The enrichment problem and schema enrichment
problem are NP-complete. (2) The data enrichment problem and in-
cremental enrichment problems are in PTIME. □

Proof sketch: Below we show statement (1). We develop PTIME
algorithms in Section 5 as a constructive proof for statement (2).

The decision problem of schema enrichment is to decide, given
𝑅 = (𝐴), 𝐷 , 𝐺 , 𝑚, and a predefined threshold 𝜎 , whether there
exists a set 𝐵 of𝑚 attributes such that instance 𝐷𝐺 of 𝑅𝐺 = (𝐴, 𝐵)
has accuracy improvement of AER above the threshold 𝜎 .
(1) The upper bound is verified by first guessing𝑚 attributes for
𝐵, and then computing 𝐷𝐺 and checking whether the accuracy
improvement is above 𝜎 ; the computing and checking steps are in
PTIME (to be verified in Section 5); hence the algorithm is in NP.
Thus the enrichment problem is in NP; so is schema enrichment.
(2) We show that schema enrichment is NP-hard for ML-based ER
and HER methods by reduction from X3C, which is NP-complete
(cf. [60]). X3C is to decide, given a set 𝐻 of elements with |𝐻 | = 3𝑞
and a collection C of 3-element subsets of𝐻 , whether there exists an
exact cover of𝐻 , i.e., a sub-collection C′ ⊆ C such that each element
in 𝐻 is in exactly one set 𝑆𝑖 ∈ C′. We show the NP-hardness also
holds for rule-based ER and HER methods (see [10] for details). □

3.3 A Scheme for Enrichment
Despite the intractability, we propose a scheme for relation enrich-
ment for (black box) ER model AER, denoted as ENRICH.

As shown in Figure 2, ENRICH has two modules ENRICH𝑆 and
ENRICH𝐷 for schema and data enrichment, respectively.

Schema enrichment. Given 𝑅 = (𝐴), a reliable KG𝐺 , a training
set 𝑆 of tuples of schema 𝑅 and a positive number𝑚, ENRICH𝑆 is to
compute enriched schema 𝑅𝐺 = (𝐴, 𝐵) with at most𝑚 additional at-
tributes. For each attribute 𝐵 ∈ 𝐵, it also returns a path 𝜌𝐵 such that
for each tuple 𝑡 of 𝑅, the value of 𝑡 [𝐵] can be fetched via path 𝜌𝐵 in
𝐺 from some vertices 𝑣 that match 𝑡 byHER. ENRICH𝑆 is conducted
once offline, i.e., we re-use 𝑅𝐺 for each input relation 𝐷 of 𝑅.
Data enrichment. After schema 𝑅𝐺 = (𝐴, 𝐵) is computed from
ENRICH𝑆 , ENRICH𝐷 populates and dynamically maintains rela-
tion 𝐷𝐺 of 𝑅𝐺 online. It supports the following two modes.
(1) Batch mode: Given schema 𝑅𝐺 , a relation 𝐷 of schema 𝑅 and a
KG𝐺 , ENRICH𝐷 generates relation𝐷𝐺 of 𝑅𝐺 . For each tuple 𝑡 in𝐷 ,
we find itsHERmatches, i.e., a set of vertices 𝑣 in𝐺 , and create an en-
riched tuple of 𝑅𝐺 for 𝑡 . As 𝑡 and 𝑣 refer to the same entity, we com-
plement 𝑡 with 𝐵 ∈ 𝐵 features of 𝑣 if the features are available in𝐺 .
(2) Incremental mode: ENRICH𝐷 incrementally maintains 𝐷𝐺 in re-
sponse to updates Δ𝐷 and Δ𝐺 online. Updates may change not
only paths 𝜌𝐵 corresponding to attributes extracted, but also ver-
tices in graphs that match tuples via HER. ENRICH𝐷 dynamically
computes changes Δ𝐷𝐺 to 𝐷𝐺 , rather than starting from scratch.

4 SCHEMA ENRICHMENT
In this section, we learn an effective policy and develop an algorithm
SchemaEnr for ENRICH𝑆 . Consider a black box ER model AER,
differentiable or non-differential. Given schema 𝑅 = (𝐴), a reliable
KG 𝐺 , a training set 𝑆 of tuples of schema 𝑅 and two numbers𝑚
and 𝑘 , we compute an enriched schema 𝑅𝐺 = (𝐴, 𝐵) of 𝑅 with 𝐺
to maximumly improve the accuracy of AER. Here 𝐵 consists of at
most𝑚 distinct attributes, along with a path pattern 𝜌𝐵 of length at
most 𝑘 for each 𝐵 ∈ 𝐵. While a larger 𝑘 may extract more features,
it often leads to more null values and weaker semantic associations.

With a slight abuse of notations, we use the following notions.
◦ A path pattern has the form 𝜌 = (𝑥0, 𝐿1, 𝑥1, . . . , 𝑥𝑙−1, 𝐿𝑙 , 𝑥𝑙 ),
where (1) each 𝑥𝑖 (𝑖 ∈ [1, 𝑙]) is a distinct variable, and 𝑥0 is
referred to as the center of 𝜌 , and (2) each (𝑥𝑖−1, 𝑥𝑖 ) is an edge
pattern with label 𝐿𝑖 . As will be seen shortly, we use path
patterns to locate features of the entity denoted by 𝑥0.

◦ A match of path pattern 𝜌 in 𝐺 , denoted by ℎ(𝜌), is a mapping
ℎ from 𝜌 to𝐺 such that (1) for each variable 𝑥𝑖 , ℎ(𝑥𝑖 ) is a vertex
in𝐺 , where ℎ(𝑥0) is the pivot of the match, and (2) for each edge
pattern (𝑥𝑖−1, 𝑥𝑖 ), (ℎ(𝑥𝑖−1), ℎ(𝑥𝑖 )) is an edge in𝐺 with the same
label 𝐿𝑖 . Intuitively, ℎ(𝜌) is a specific path from vertex ℎ(𝑥0) in
𝐺 , and fetches the value of a selected feature (Section 5.1).

Naive algorithms. To build schema 𝑅𝐺 , one may want to use
a greedy strategy that iteratively picks an attribute to maximize
the mutual information, or to train an ML model that retrieves𝑚
“relevant” 𝜌𝐵 in 𝐺 . These, however, do not work well, for three
reasons: (a) The holistic effect of multiple attributes cannot easily
be captured by mutual information. (b) There are an exponential
number of paths in 𝐺 and thus, it is too costly to enumerate them
all and find𝑚 path patterns that maximize the accuracy. (c) It is
hard to define an explicit loss for training of the black-box AER.
Overview. In light of this, we adopt an approach based on policy-
learning with a parameterized policy function 𝜋𝜃 (i.e., 𝜃 is the set
of parameters in 𝜋𝜃 ). It consists of the following steps.
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(1) HER mapping. Taking a set 𝐷 of tuples of schema 𝑅 and graph
𝐺 as input, we pre-compute the set of HER matches in 𝐺 .
(2) Policy learning and model fine-tuning. Given the HER matches
obtained above, we interleave the policy learning and model train-
ing to jointly learn a policy 𝜋𝜃 , enrich 𝑅 via reinforcement learning
(RL), and improve the accuracy of model AER on the enriched data.

Below we present our HER mapping and policy function in Sec-
tions 4.1-4.2, respectively, and then give SchemaEnr (Section 4.3).

4.1 Heterogeneous Entity Resolution
We start with a method for the following HER problem.
◦ Input:𝑅 = (𝐴),𝐺 , a tuple 𝑡 of schema𝑅 and a positive number𝐾 .
◦ Output: A setV𝑡 of top-𝐾 vertices that match 𝑡 (i.e., refer to the

same entity) and have the largest correlation strengths with 𝑡 .
Intuitively, for a tuple 𝑡 of schema 𝑅, there are possibly multiple

vertices 𝑣 in𝐺 that match 𝑡 . OurHERmethod finds top-𝐾 matching
vertices by two steps: (1) blocking, which retrieves candidate vertices
in 𝐺 for the given tuple 𝑡 , and (2) ranking, which returns the top-𝐾
setV𝑡 with the highest correlation strengths, via a ranking strategy.
Blocking. Given 𝑡 , we initialize the set C𝑡 of candidate matches as
blocks, by taking all vertices 𝑣 whose “similarity” to 𝑡 are above a
predefined threshold. We adopt the Jaccard similarity. More specifi-
cally, we serialize all values of 𝑡 to a sequence and tokenize it into a
set Set(𝑡). For each vertex 𝑣 ∈ 𝐺 , we extract an induced subgraph
𝐺𝑣 of 𝐺 , including 𝑣 and the neighbors of 𝑣 . For each 𝑣𝑖 in 𝐺𝑣 , we
serialize and tokenize its label 𝐿(𝑣𝑖 ). Denote the union of token
sets of all vertices in 𝐺𝑣 by Set(𝐺𝑣). Then the Jaccard similarity is
computed by Jacc(𝑡, 𝑣) = |Set(𝐺𝑣 )∩Set(𝑡 ) |

|Set(𝐺𝑣 )∪Set(𝑡 ) | . Intuitively, (𝑡, 𝑣) makes
a candidate match only if 𝑡 and 𝐺𝑣 share enough keywords.

After that, we compute HER matches within each C𝑡 for each 𝑡 .
Ranking. Jaccard similarity only considers syntactic similarity to
form candidates. To find true HER matches, within each block, we
identify vertices 𝑣 that match 𝑡 via parametric simulation (see more
in [51]), which complements the blocking with semantic checking.
Intuitively, it recursively checks the pairwise semantic closeness
between the attributes of 𝑡 and the descendants of 𝑣 , by embedding
ML in topological matching. For each 𝐴 ∈ 𝐴, we can find a path
pattern 𝜌𝐴 such that a match of 𝜌𝐴 pivoted at 𝑣 in𝐺 represents 𝑡 [𝐴],
e.g., attribute city vs. path pattern (𝑥0, address, 𝑥1, isLocatedIn, x2).

We rank the HER matches and pick top-𝐾 ones as follows. We
expand 𝐺𝑣 by DFS following each path pattern 𝜌𝐴 , starting from
𝑣 . We adopt SentBert [104], a bert-based model, to transform each
vertex 𝑣𝑖 in 𝐺𝑣 (𝑖 ∈ [0, 𝑙]) into an embedding e𝑣𝑖 . Similarly, we
serialize 𝑡 and use SentBert to transform it to an embedding e𝑡 . We
measure the semantic similarity between 𝑡 and its most relevant
vertex in𝐺𝑣 , via sem(𝑡, 𝑣) = max𝑣𝑖 ∈𝐺𝑣

cos(e𝑡 , e𝑣𝑖 ), where cos is the
cosine similarity. We adopt the contrastive learning strategy [122]
to pre-train SentBert by self-annotated training data.

Given𝐾 , we rank all matching vertices 𝑣 and return the setV𝑡 of
top-𝐾 HERmatches with the largest semantic correlation strengths.

4.2 Policy Function
We next present the objective and training of our policy function.
Representing 𝐵. We represent 𝐵 as a set 𝑄 of path patterns, i.e., 𝑄 =

{𝜌𝐵 | 𝐵 ∈ 𝐵}. Each 𝐵 ∈ 𝐵 is specified by a pattern 𝜌𝐵 and 𝐵 = 𝐿1 . . .

𝐿𝑙 , i.e., its attribute name is the concatenation of edge labels of 𝜌𝐵 .
Based on the path pattern 𝜌𝐵 (𝐵 ∈ 𝐵), for each tuple 𝑡 of schema

𝑅, we can compute an enriched tuple 𝑡𝐺 for 𝑡 , by instantiating each
𝐵-attribute of 𝑡𝐺 following the path matches of 𝜌𝐵 pivoted at some
vertices in the setV𝑡 of top-ranked HER matches of 𝑡 (see below).
Objective. Below are criteria for 𝜌𝐵 (𝐵 ∈ 𝐵). Consider a validation
set 𝑇 (resp. an enriched 𝑇𝐺 of 𝑇 ) of schema 𝑅 (resp. 𝑅𝐺 = (𝐴, 𝐵)).
(1) Diversity.We adopt mutual informationMI(𝑥,𝑦) [31] tomeasure
the correlation between attributes 𝑥 and 𝑦. We define the diversity
of 𝑅𝐺 on 𝑇𝐺 as div(𝑇𝐺 ) = − 1

|𝑅𝐺 | ( |𝑅𝐺 |−1)
∑︁
𝑥,𝑦∈𝐴∪�̄�&𝑥≠𝑦MI(𝑥,𝑦).

Intuitively, we want to enrich 𝑅 = (𝐴) with new attributes 𝐵 that
are as diverse as possible from each other and from the existing 𝐴.

(2) Completeness. We count and normalize the number of null
values in 𝐵 on the validation relation 𝑇𝐺 as the completeness, i.e.,
comp(𝑇𝐺 ) = − #{null values}

#{all values} . Fewer null values are more desirable.

(3) Distinguishability. The enriched 𝐵 should be distinguishing,
improving the accuracy of AER on 𝑇𝐺 , denoted by F1 (𝑇𝐺 ,AER).

Taken together, the objective value we want to maximize is:
obj(𝑇𝐺 ,AER) = 𝑤divdiv(𝑇𝐺 ) +𝑤compcomp(𝑇𝐺 ) +𝑤F1F1 (𝑇𝐺 ,AER)
where𝑤div,𝑤comp and𝑤F1 are weights of the criteria, respectively.

Then the schema enrichment problem is equivalent to finding 𝑄
that maximizes obj(𝑇𝐺 ,AER). We approach it via policy learning.

Policy function.We iteratively construct the set𝑄 of path patterns
by building the patterns one by one, adding one edge at a time, via
a parameterized policy 𝜋𝜃 , until all𝑚 path patterns are in place.

Given a (partially constructed) set 𝑄 , we can create an enriched
tuple 𝑡𝐺 for each 𝑡 in 𝐷 for computing the objective value mainly in
the following three steps (see Section 5.1). (a) For each HER match
𝑣 of 𝑡 in V𝑡 , we instantiate the center 𝑥0 of each 𝜌𝐵 in 𝑄 by 𝑣 . (b)
Starting from 𝑣 , we follow the edge labels in 𝜌𝐵 to get a candidate
value of 𝑡𝐺 [𝐵]. (c) Given all such candidate values, we employ a
ranking model to assign the most promising value to 𝑡𝐺 [𝐵].

Assume that we have 𝑖 − 1 paths 𝜌𝐵1 , . . . 𝜌𝐵𝑖−1 (𝑖 ∈ [1,𝑚]), and
the 𝑖-th path 𝜌𝐵𝑖 is partially constructed with 𝑗 edges ( 𝑗 ∈ [1, 𝑘−1]).
Denote by 𝑄𝑖, 𝑗 the resulting partial set, and by 𝑇𝑄𝑖,𝑗

the enriched
relation of the validation set 𝑇 under partial schema (𝐴, 𝐵1, . . . , 𝐵𝑖 ).
We use the partial𝑄𝑖, 𝑗 as state 𝑠𝑖, 𝑗 and the next edge 𝑒 to be added as
action 𝑎𝑖, 𝑗 . After taking action 𝑎𝑖, 𝑗 , state 𝑠𝑖, 𝑗 is transmitted to a new
state 𝑠𝑖, 𝑗+1 = 𝑄𝑖, 𝑗+1, which extends path pattern 𝜌𝐵𝑖 with a new
edge 𝑒 . We add a special action [SEP] to terminate the expansion
of 𝜌𝐵𝑖 , and stop it if its length is 𝑘 . In each step, we compute the
improvement on the objective value as the reward 𝑟𝑖, 𝑗 , i.e.,

𝑟𝑖, 𝑗 = obj(𝑇𝑄𝑖,𝑗+1 ,AER) − obj(𝑇𝑄𝑖,𝑗
,AER) .

Then we use a policy function 𝜋𝜃 with parameter 𝜃 to map each
state 𝑠𝑖, 𝑗 to a vector a𝑖, 𝑗 of action probabilities, i.e., 𝜋𝜃 = 𝑝 (𝑎𝑖, 𝑗 |
𝑠𝑖, 𝑗 , 𝜃 ). We adopt a CNN neural network for 𝜋𝜃 and define

a𝑖, 𝑗 = softmax(FC(CNN(transform(𝑠𝑖, 𝑗 )))),
where transform(𝑠𝑖, 𝑗 ) [70] computes a binary vector of state 𝑠𝑖, 𝑗 =
𝑄𝑖, 𝑗 , and FC is a fully-connected layer.

To find the optimal 𝑄 , we learn 𝜋𝜃 to maximize the expected
reward E𝑝 (𝑠𝑖,𝑗 ;𝜃 ) [𝑟𝑖, 𝑗 ]. Here the reward can be non-differentiable
because it is computed based on AER in the validation data, and
the action space is large. Thus, we use Maskable PPO [70, 107],

3113



the invalid action masking for the Proximal Policy Optimization
method that imposes no constraints on AER, to iteratively update
the set 𝜃 of parameters of 𝜋𝜃 with the following loss function J𝜃 :

J𝜃 =

𝑖∑︂
𝑥=1

𝑠𝑥,·∑︂
𝑦=1
E𝑝 (𝑠𝑥,𝑦 ;𝜃old ) [

𝑝 (𝑎𝑥,𝑦 |𝑠𝑥,𝑦−1;𝜃 )
𝑝 (𝑎𝑥,𝑦 |𝑠𝑥,𝑦−1;𝜃old)

×

𝐴𝜃old (𝑠𝑥,𝑦−1, 𝑎𝑥,𝑦)] − 𝛽 × KL(𝜃, 𝜃old)

(1)

where 𝜃old is the set of parameters before updates, 𝐴𝜃old is an es-
timated advantage function computed by rewards [107], and KL
is Kullback-Leibler Divergence that measures the distribution dis-
crepancy between 𝜋𝜃 and 𝜋𝜃old , and is a regularization term.

Intuitively, by adopting such a policy learning approach, we
give path patterns low probabilities if their rewards (feedback) are
negative or small, so that they are not selected in the next iterations.
The policy gradually learns which edges are promising to add and
only relevant attributes are enriched. If all remaining attributes
are bad, the policy may stop enrichment and stick to the current
attributes. Hence 𝑅𝐺 = (𝐴, 𝐵) is as least as good as 𝑅 = (𝐴).
Example 6: Consider the path patterns in Figure 2. Assume that
we have constructed 𝜌1 = (𝑥0, age, 𝑥1), and 𝜌2 = (𝑦0, spouse, 𝑦1) is
partially constructed. Then we continually add more edges with the
maximum reward, following 𝜋𝜃 . Suppose that we add (𝑦1, 𝑦2) (la-
beled name) to 𝜌2, followed by the special action [SEP]. We then ter-
minate the expansion of 𝜌2 and continue to construct other paths. □

4.3 Algorithm for Schema Enrichment
Although the policy 𝜋𝜃 is able to construct path patterns without
costly enumeration, it stills encounters some issues. (1) The dis-
tributions of the training and validation sets keep changing due
to schema enrichment, and it is costly to frequently re-train AER.
Worse still, (2) the efficiency of policy learning depends on the feed-
back from AER; this makes the policy learning process expensive.

In light of these, we propose SchemaEnr for schema enrichment.
Its novelty includes a joint training strategy for 𝜋𝜃 andAER, making
up the time for computing feedbacks from AER in policy learning.

Algorithm. Given schema 𝑅, a training (resp. validation) set 𝑆 (resp.
𝑇 ) of tuples of schema 𝑅, a graph𝐺 , an ER modelAER, a maximum
batch number 𝐼 , parameters𝑚, 𝑘 and 𝐾 for constraining the maxi-
mum additional attributes, the length of path patterns and the num-
ber ofHERmatches, respectively, we give SchemaEnr in Figure 3. It
returns enriched 𝑅𝐺 = (𝐴, 𝐵) such that the objective value is maxi-
mized on the enriched validation data. Here 𝑆 can be obtained from
benchmarks or by manual labeling a few candidates (see Section 6).

After initializing 𝜋𝜃 (line 1), SchemaEnr pre-computes the top-𝐾
HER matches in 𝐺 for each tuple in 𝑆 or 𝑇 , (lines 2-3). Following
[92], we jointly optimize 𝜋𝜃 and AER in batches (line 4-18) such
that the policy function learns to find “good” path patterns and the
ER model is fine-tuned to improve the accuracy simultaneously.

Joint training. In each batch, the training set, the validation set and
the set of additional attributes for the current batch are denoted by
𝑆train,𝑇valid and 𝐵bat, respectively; 𝐵bat is empty initially (lines 5-6).

Policy 𝜋𝜃 is first fixed and the set 𝐵bat is constructed iteratively
to train AER (lines 7-12). In the 𝑖-th iteration, a new path 𝜌bat

𝐵𝑖
is

located based on the policy 𝜋𝜃 , via procedure PathPolicy (omit-
ted). Intuitively, it continually adds a new edge with the maximum

reward following 𝜋𝜃 until either [SEP] is added or |𝜌bat
𝐵𝑖

| > 𝑘 . A
new attribute 𝐵bat

𝑖
is created accordingly by concatenating the edge

labels of 𝜌bat
𝐵𝑖

(line 8). Note that even when one more attribute is
added, the distribution of enriched data may change dramatically.
To make AER robust to diverse distributions, we accumulate the
enriched training (resp. validation) data in a set Strain (resp. Tvalid),
which are initially empty (line 5), during the iterative process (lines
9-11). Whenever we get a new attribute 𝐵bat

𝑖
, we compute the en-

riched relations of 𝑆train and𝑇valid (see Section 5.1) and add them to
Strain and Tvalid, respectively. Finally, the entire Strain is adopted
to upgrade AER with the cross entropy loss (line 12).

Then we fix AER and learn 𝜋𝜃 by iteratively sampling path
patterns (line 13), via procedure SampleQ (see below), and update
the parameter 𝜃 of 𝜋𝜃 based on the advantage function 𝐴𝜃 and the
loss J𝜃 (Line 14 - 17, see below). Intuitively, at each state 𝑠𝑖, 𝑗 , the
next action is sampled from the action probabilities of 𝜋𝜃 .

Both 𝜋𝜃 and AER are optimized iteratively until it reaches the
maximum number 𝐼 of batches. Finally, we obtain the final set 𝐵, by
calling procedure Inference (omitted), which performs actions with
maximum rewards following 𝜋𝜃 (see [10]). With a small learning
rate 𝛼 and consistently convergent AER, 𝜋𝜃 will eventually con-
verge, and at least to a local minima [99, 125], e.g., in Section 6,
SchemaEnr only needs approx. 5 iterations to converge on average.

Procedure SampleQ . Taking current policy 𝜋𝜃 as input, SampleQ
samples a set of path patterns as 𝑄 following the action probabili-
ties of 𝜋𝜃 . To enable effective sampling, we design a mask strategy.
When selecting path patterns, we filter out those with small com-
pleteness, e.g., less than 10%. Attributes with many null values are
considered as low quality and 𝜋𝜃 need not to explore them.

Procedure Reward. Given the current state 𝑠 , Reward computes its
reward 𝑟𝑠 (Section 4.2). Since AER is not stable in the first few
epochs, we design a warm-up strategy, which sets a small weight
𝑤F1 for F1 and a large weight𝑤div (resp.𝑤comp) for div (resp. comp)
so that 𝜋𝜃 is not affected by unstable AER. Then 𝑤F1 (resp. 𝑤div
and𝑤comp) gradually increases (resp. decrease) until they become
1. After computing the reward 𝑟𝑠 , we compute the advantage
function 𝐴𝜃 based on 𝑟𝑠 using 𝜃 from the previous iteration.
Example 7: Consider the tuples from Table 1 as the training set
𝑆 of tuples, with 𝑚 = 2 and 𝑘 = 2. In the first iteration, AER is
first trained on 𝑆 . Due to the lack of initial attributes, AER does
not work well. Then SchemaEnr executes SampleQ to sample a
few path patterns, e.g., 𝜌1 = (𝑥0, age, 𝑥1), 𝜌2 = (𝑦0, spouse, 𝑦1,
name, 𝑦2), 𝜌3 = (𝑧0, occupation, 𝑧1) and 𝜌4 = (𝑢0,wasBornIn, 𝑢1,
isLocatedIn, 𝑢2). Suppose {𝜌1, 𝜌4} is sampled. When 𝜌1 is added
into 𝐵, the reward is 0.5. However, when 𝜌4 is added, the reward
drops to 0.4 since the values of the 𝜌4-attribute of all tuples are null
except 𝑡1. Thus in the next iteration, 𝜋𝜃 gives higher (resp. lower)
probability for 𝜌1 (resp. 𝜌4) to be sampled. To balance exploration
and exploitation, 𝜋𝜃 also gives certain probabilities for unseen paths,
e.g., 𝜌3. After several iterations, 𝜋𝜃 is learned to select good path pat-
terns and AER is fine-tuned to adapt to data with different schema.
Finally {𝜌1, 𝜌2} is sampled and SchemaEnr finds the “optimal” 𝐵. □

Complexity. SchemaEnr is in 𝑂 (( |𝑆 | + |𝑇 |) |𝐺 |𝐼𝑚𝑘) time, when it
takes 𝐼 batches to train 𝜋𝜃 and AER. The HER mapping takes
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Input: A schema 𝑅 = (𝐴) , a training set 𝑆 , a validation set𝑇 , a graph𝐺 ,
AER, a batch number 𝐼 and parameters𝑚, 𝑘 and 𝐾 .

Output: An enriched schema 𝑅𝐺 = (𝐴, �̄�) .
1. Initialize the policy function 𝜋𝜃 ; bat := 0;
2. for each 𝑡 in 𝑆 or𝑇 do
3. V𝑡 := the top-𝐾 HER matches of 𝑡 in𝐺 ;
4. while bat < 𝐼 do
5. 𝑆train := getBatch(𝑆 ) ;𝑇valid := getBatch(𝑇 ) ; Strain := Tvalid := ∅;
6. �̄�bat := ∅; /* The enriched schema for the current batch */

/*Joint training: Fix policy 𝜋𝜃 and train AER */
7. for each 𝑖 ∈ [1,𝑚] do
8. 𝜌bat

𝐵𝑖
:= PathPolicy(𝐴, �̄�bat, 𝜋𝜃 ) ; �̄�bat := �̄�bat ∪ {𝐵bat

𝑖
};

/* Compute enriched relations based on HER matches in V𝑡 */
9. Δtrain := the enriched relation of 𝑆train under schema (𝐴, �̄�bat ) ;
10. Δvalid := the enriched relation of𝑇valid under schema (𝐴, �̄�bat ) ;
11. Strain := Strain ∪ Δtrain; Tvalid := Tvalid ∪ Δvalid;
12. Upgrade AER with gradient ▽AERCrossEntropy(Strain ) ;

/*Joint training: Fix AER and learn policy 𝜋𝜃 */
13. 𝑄 := SampleQ (𝜋𝜃 ) where𝑄 has𝑚 paths 𝜌𝐵1 , . . . , 𝜌𝐵𝑚 ;
14. for each state 𝑠𝑖,𝑗 = 𝑄𝑖,𝑗 when generating𝑄 with 𝜋𝜃 do
15. rw_sum :=

∑︁|𝑄 |
𝑠=|𝑄𝑖,𝑗 |

𝛾𝑙−|𝑄𝑖,𝑗 | · 𝑟𝑠 , where 𝛾 is the decay
factor and 𝑟𝑠 is the reward at state 𝑠 , i.e., 𝑟𝑠 = Reward(𝑠 ) ;

16. Compute the advantage function �̂�𝜃 according to rw_sum;
17. Update 𝜃 by optimizing J𝜃 (Equation 1) with learning rate 𝛼 ;
18. bat := bat + 1;
19. �̄� := Inference(𝐴, 𝜋𝜃 ) ;
20. return 𝑅𝐺 = (𝐴, �̄�) ;

Figure 3: Algorithm SchemaEnr

𝑂 (( |𝑆 | + |𝑇 |) |𝐺 |) time. In each epoch, it generates Strain and Tvalid
in 𝑂 (( |𝑆 | + |𝑇 |)𝑚𝑘) time; moreover, 𝜋𝜃 takes 𝑂 ( |𝑇 |𝑚𝑘) time to
sample and learn, andAER typically takes𝑂 ( |𝑆 | + |𝑇 |) time to train
and fine-tune. As will be seen in Section 6, our joint training strat-
egy reduces the cost by making up the time for fine-tuning AER,
e.g., it takes 2,213s to learn the policy on 3,162 tuples in 10 epoches.

5 POPULATING ENRICHED SCHEMA
Below we develop algorithms for populating and maintaining rela-
tions 𝐷𝐺 of schema 𝑅𝐺 after 𝑅𝐺 = (𝐴, 𝐵) is computed (along with
the path pattern 𝜌𝐵 for each 𝐵 in 𝐵). We develop a batch algorithm
BEnrich (Section 5.1) and an incremental IncEnrich (Section 5.2),
parallelized as PBEnrich and PIncEnrich, respectively [10].

5.1 Batch Enrichment
Algorithm BEnrich mainly consists of two steps: (1) HER mapping,
which retrieves the set V𝑡 of top-𝐾 HER matches for each 𝑡 in 𝐷
(presented in Section 4.1); and (2) Populating, which instantiates
the 𝐵-attribute values to get the enriched relation 𝐷𝐺 (see below).

Populating. For each 𝑡 , we create an enriched tuple 𝑡𝐺 as follows.
(a) For each 𝐴 ∈ 𝐴, 𝑡𝐺 [𝐴] copies the corresponding 𝑡 [𝐴]; and
(b) For each 𝐵 ∈ 𝐵, we compute a set𝐶𝑡𝐺 [𝐵 ] of candidate values for

𝑡𝐺 [𝐵] and use a ranking modelMrank to assign the top-ranked
one to 𝑡𝐺 [𝐵] (see [10]); we set 𝑡𝐺 [𝐵] = null if 𝐶𝑡𝐺 [𝐵 ] is empty.

Generating candidate values. Initially, the set 𝐶𝑡𝐺 [𝐵 ] is empty. For
each HER match 𝑣 of 𝑡 in V𝑡 , we use the path matches ℎ of pattern
𝜌𝐵 pivoted at 𝑣 to generate candidate values of 𝑡𝐺 [𝐵], i.e., for each
path match ℎ, we add the label of the last vertex of ℎ to 𝐶𝑡𝐺 [𝐵 ] .

There is a trade-off between the length of paths and the number

Figure 4: Incremental enrichment

of null values. On the one hand, a longer 𝜌𝐵 may lead to more
combinations of edge labels and thus, more candidate attributes 𝐵.
On the other hand, it is harder to find a path match of a longer 𝜌𝐵 ,
and the 𝐵-attribute values of more tuples may set null, if we cannot
find such path matches. To strike a balance, we use the parameter
𝑘 to bound the length of paths, which will be tested in Section 6.
Example 8: Given the path patterns in Figure 2, the HER map-
ping step links 𝑡𝑖 in Table 1 to 𝑣𝑖 in Figure 1 for 𝑖 = 1, . . . , 5. The
populating step then traverses all path matches pivoted at 𝑣𝑖 in 𝐺
and fills in the values of the enriched attributes of 𝑡𝑖 in 𝐷𝐺 , e.g.,
ℎ1 : {(𝑣5, 𝑣25) ↦→ (𝑥0, 𝑥1)} is the only path match of 𝜌1 pivoted at
𝑣5 and thus, the age-value of the enriched tuple of 𝑡5 is 42 by the
ranking model. In contrast, 𝜌3 finds no path match pivoted at 𝑣5
and thus, the occupation-value of the enriched tuple of 𝑡5 is null. □

Complexity. Since we traverse paths to populate enriched schema,
BEnrich takes𝑂 ( |𝐷 | |𝐺 | + |𝐷 | |𝐶max |𝐾𝑚) time, where 𝐾 is the max-
imum number of HER matches for each 𝑡 in 𝐷 and |𝐶max | is the
maximum number of candidate values for a given attribute and a
given HER match of 𝑡 . Thus BEnrich is in PTIME; this construc-
tively proves PTIME data enrichment and checking for Theorem 1.

5.2 Incremental Enrichment
We next develop the incremental algorithm IncEnrich.
Setting. We consider both graph updates Δ𝐺 and relation updates
Δ𝐷 , where Δ𝐷 consists of deleted/inserted tuples and Δ𝐺 consists
of edges. The goal is to compute Δ𝐷𝐺 such that 𝐷𝐺 ⊕ Δ𝐷𝐺 is equal
to the enriched relation of relation 𝐷 ⊕ Δ𝐷 with graph 𝐺 ⊕ Δ𝐺 .

We can divide Δ𝐷𝐺 into two parts: (a) the enriched relation of
Δ𝐷 with 𝐺 ⊕ Δ𝐺 , and (b) the updates of the enriched relation of
𝐷 with 𝐺 ⊕ Δ𝐺 . For part (a), it can be directly applying the batch
algorithm to Δ𝐷 with 𝐺 ⊕ Δ𝐺 . Below we mainly focus on part (b).

Recall that in the enriched schema 𝑅𝐺 = (𝐴, 𝐵), each attribute
𝐴 ∈ 𝐴 is also associated with a path pattern 𝜌𝐴 . When𝐺 is updated,
the path matches of 𝜌𝐴 (and thus HER matches) may also change,
a complication introduced by incremental enrichment.
Auxiliary structures. We maintain the following for incremental
enrichment: (1)V𝑡 , the set of top-𝐾 HER matches for each 𝑡 in 𝐷 ;
(2) C𝑡 , the set of all qualified vertices after blocking for each 𝑡 in
𝐷 , to allow efficient updates on the top-𝐾 ones, (3) Piv, an inverted
index that maps each edge 𝑒 in𝐺 to a list of pivots 𝑣0 in𝐺 , such that
there exists a path match ℎ of pattern 𝜌𝐴 (resp. 𝜌𝐵 ) pivoted at 𝑣0,
and 𝑒 is an edge of path ℎ(𝜌𝐴) (resp. ℎ(𝜌𝐵)); intuitively, Piv helps
us identify pivots that can be affected by 𝑒 . (4) Indices to get HER
matched vertices (resp. tuples) for each 𝑡 in 𝐷 (resp. each 𝑣 in 𝐺).
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Input: An enriched relation 𝐷𝐺 , a knowledge graph𝐺 , schema 𝑅𝐺 = (𝐴, �̄�) ,
graph updates Δ𝐺 and the auxiliary structures.

Output: The updates of the enriched relation of 𝐷 with𝐺 ⊕ Δ𝐺 .
1. 𝑃 := GetAffectedPathMatches(Δ𝐺,𝐺, Piv) ;
2. Group the path matches in 𝑃 by pivots;
3. for each ℎ ∈ 𝑃𝑣0 , where 𝑃𝑣0 stores affected matches pivoted at 𝑣0 do
4. if ℎ is a path match of 𝜌𝐵 where 𝐵 ∈ �̄� do / * Case [C1] * /
5. for each 𝑡 whose top-𝐾 HER matches include 𝑣0 do
6. Update the 𝐵-attribute value of the enriched tuple 𝑡𝐺 of 𝑡 ;
7. if ℎ is a path match of 𝜌𝐴 where 𝐴 ∈ 𝐴 do / * Case [C2] * /
8. for each 𝑡 such that 𝑣0 is in V𝑡 or C𝑡 do
9. Re-compute V𝑡 and C𝑡 ;
10. if V𝑡 is updated do
11. Re-populating all �̄�-attribute values of 𝑡𝐺 based on V𝑡 ;
12. return Δ𝐷𝐺 = {𝑡𝐺 ∈ 𝐷𝐺 | 𝑡𝐺 is updated};

Figure 5: Algorithm IncEnrich

Incremental algorithm. We first incrementalize BEnrich with
unit updates (i.e., insertion/deletion of an edge). Then we show how
to process a batch update Δ𝐺 (i.e., a sequence of unit updates) to𝐺 .
Unit insertion.When an edge 𝑒 is inserted into𝐺 , we create an new
entry, denoted by Piv(𝑒), and initialize it to be empty. Then we
traverse the path matches ℎ of 𝜌𝐴/𝜌𝐵 of 𝑅𝐺 = (𝐴, 𝐵) that pass
through 𝑒 , and add the pivot 𝑣0 of ℎ to Piv(𝑒). We group these path
matches by their pivots, and use 𝑃𝑣0 to denote the set of all new path
matches pivoted at 𝑣0 that are generated due to the insertion of 𝑒 .

We process each path match ℎ in 𝑃𝑣0 in the following two cases.

(1) [C1] When ℎ is a path match of 𝜌𝐵 where 𝐵 ∈ 𝐵. In this case,
edge updates on ℎ(𝜌𝐵) will not affect HER mapping. For each 𝑡
whose top-𝐾 HERmatches includes 𝑣0, we update𝐶𝑡𝐺 [𝐵 ] by adding
the last vertex label of ℎ(𝜌𝐵) and call the ranking model Mrank
to get the new top-ranked 𝐵-value for the enriched tuple 𝑡𝐺 of 𝑡 .

(2) [C2]Whenℎ is a pathmatch of 𝜌𝐴 where𝐴 ∈ 𝐴. Sinceℎ(𝜌𝐴)
corresponds to an attribute𝐴 ∈ 𝐴 forHERmapping, bothV𝑡 and C𝑡
maintained for tuples 𝑡 in 𝐷 may be updated, due to the topological
changes, e.g., ℎ(𝜌𝐴) may “promote” 𝑣0 to be a new top HER match
for 𝑡 or “demote” 𝑣0 if 𝑣0 is a current top-𝐾 HER match. We re-
compute C𝑡 andV𝑡 . IfV𝑡 is changed, we update indices accordingly,
and re-populate all 𝐵-attribute values of the enriched tuple 𝑡𝐺 of
𝑡 , by constructing the new candidate sets based on newV𝑡 .
Example 9: Consider Δ𝐷 that inserts a new tuple 𝑡6 into𝐷 and Δ𝐺
that inserts a new edge 𝑒 = (𝑣2, 𝑣28) into 𝐺 , where 𝐿(𝑒) = age and
𝐿(𝑣28) = 38. We visualize the insertion of 𝑒 in Figure 4. Given 𝜌1 =

(𝑥0, age, 𝑥1) in Figure 2, ℎ : {(𝑣2, 𝑣28) ↦→ (𝑥0, 𝑥1)} is a path match
of 𝜌1. Thus, we add the pivot 𝑣2 to Piv(𝑒) and get 𝑃𝑣2 = {ℎ(𝜌1)}.
Since ℎ(𝜌1) is a path match of Case [C1], 𝑣2 is still anHERmatch of
𝑡2 and we populate the age of the enriched tuple of 𝑡2 by 𝐿(𝑣28), i.e.,
we update it from null to 38. For Δ𝐷 , we simply run BEnrich(Δ𝐷,
𝐺 ⊕Δ𝐺) to populate the 𝐵-attributes of the enriched tuple of 𝑡6. □

Unit deletion. Unit deletion is processed similarly. We first retrieve
the set 𝑃𝑣0 of all path matches that are pivoted at 𝑣0 and are removed
due to the deletion of 𝑒 . We process each path match ℎ ∈ 𝑃𝑣0 :
(1) [C1] ℎ is a path match of 𝜌𝐵 . For each 𝑡 whose top-𝐾 HER
matches includes 𝑣0, we update𝐶𝑡𝐺 [𝐵 ] by removing the value added
by ℎ(𝜌𝐵), and update the assignment of 𝑡𝐺 [𝐵] based on the ranking
model. If 𝐶𝑡𝐺 [𝐵 ] becomes empty, we set 𝑡𝐺 [𝐵] = null. (2) [C2] ℎ is
a pathmatch of 𝜌𝐴.We update the setsV𝑡 and C𝑡 as stated before.
If V𝑡 is updated, we re-populate the 𝐵-attribute values accordingly.

Table 2: Datasets and knowledge graphs
Datasets |𝐷 | |𝐴 | 𝐺 |𝑉 | |𝐸 |
Shoes [86] 3162 3 Wikidata [4] 1.1M 6.3M
Amazon [86] 4589 3 Wikidata [4] 1.1M 6.3M
Person [7] 2.7M 3 Wikidata [4] 1.1M 6.3M
IMDB [2] 2.0M 3 Movie [2] 6.1M 30.0M

Company [86, 95] 28,200 1 Wikidata [4] 1.1M 6.3M
All-xlarge [86, 124] 14,115 3 Wikidata [4] 1.1M 6.3M

Batch updates. Based on unit updates, we develop IncEnrich in Fig-
ure 5, for incremental enrichment in response to batch updates
Δ𝐺 = (Δ𝐺+,Δ𝐺−), where Δ𝐺+ (resp. Δ𝐺− ) is the set of edge inser-
tions (resp. deletions). IncEnrich first retrieves the set 𝑃 of affected
path matches, using Piv[𝑒] for all 𝑒 ∈ Δ𝐺 (line 1). Then it groups
the affected path matches by pivots [53], so that each path match
appears only once even when it has multiple updates (line 2). With
a slight abuse of notation, we also denote the group of affected path
matches pivoted at 𝑣0 by 𝑃𝑣0 . It processes each path match ℎ in 𝑃𝑣0
as follows (lines 3 - 11). If ℎ is a path match of 𝜌𝐵 where 𝐵 ∈ 𝐵 (lines
4-6), we check each 𝑡 whose top-𝐾 HERmatches include 𝑣0, and up-
date the 𝐵-value of the enriched tuple 𝑡𝐺 of 𝑡 if needed. If ℎ is a path
match of 𝜌𝐴 where 𝐴 ∈ 𝐴 (lines 7-11), we retrieve the tuples 𝑡 such
that 𝑣0 is inV𝑡 (resp. C𝑡 ) and updateV𝑡 (resp. C𝑡 ) if 𝑣0 is no longer
a top-𝐾 HER match (resp. a candidate match) of 𝑡 . IfV𝑡 is changed,
we re-populate all 𝐵-values of 𝑡𝐺 based on the new candidate values
from V𝑡 . Finally, the updates (i.e., Δ𝐷𝐺 ) are returned (line 12).

Complexity. IncEnrich takes 𝑂 (𝑐up#Aff |Δ𝐺 | |𝑃𝑒 |) time, where #Aff
is the maximum number of tuples in 𝐷 affected by Δ𝐺 from one
path match, 𝑐up is the update cost for one tuple 𝑡 and 𝑃𝑒 is the set of
affected pathmatches for one 𝑒 ∈ Δ𝐺 , since it takes𝑂 (𝑐up#Aff) time
to process each affected path match in IncEnrich. Thus IncEnrich
is in PTIME. This completes the proof of part (2) of Theorem 1.

6 EXPERIMENTAL STUDY
Using benchmarks and real-life data, we empirically evaluated (1)
the effectiveness of schema enrichment (SE) and the impact of our
policy function on accuracy, (2) the efficiency of SE and (3) the scal-
ability of batch enrichment (BE) and incremental enrichment (IE).
Experimental settings.We start with our experimental settings.
Datasets.We used four benchmarks (two hardest ones with the low-
est F1 of AER and two with the largest F1 among all benchmarks),
and two real-life datasets 𝐷 . Table 2 reports the statistic and the KG
𝐺 for each dataset. Here (1) Shoes [86, 95] is an ER benchmark from
WDC Product. (2) Amazon [86] is a benchmark of product data. (3)
Company is among the largest ER benchmark in [86, 95], of textual
data. (4) All-xlarge [86, 124] is the largest ER benchmark fromWDC
Product with four datasets Computers, Cameras, Watches and
Shoes. For the four benchmarks, we used all their attributes as 𝐴.

We also used real-life (5) Person [7] from Wikipedia, where 𝐴 =

(name, gender, achieve), and (6) IMDB [2], a dataset of movies and
TV Series from 1905 to 2022, where 𝐴 = (title, actor, actress). We
set their ground truth by retrieving candidate matching pairs, via
Jaccard similarity. We automatically labeled a few tuple pairs with
handcrafted rules, and then manually labeled the remaining ones;
we also exploited unique links within tuples of Person and IMDB for
automatic labeling of a few matches [52]. Finally in total only 1.6K
and 1.7K tuples were manually labeled for the two, respectively.

We adopted the same setting of [86], by splitting data to training
data 𝑆 , validation data 𝑇 and testing data𝑈 with the ratio of 3:1:1.
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Figure 6: Effectiveness evaluation

ER model AER.We used three deep learning AER: (1) Ditto [86], a
state-of-the-art pre-trained language model. We used RoBerta [89]
for Ditto without data augmentation. (2) Dittoaug [86], Ditto with
data augmentation. (3) PromptEM [124], a state-of-the-art ERmodel
that adopts prompt tuning to fine-tune pre-trained language model.
We adopted RoBerta [89] following [124]. The default AER is Ditto.
Here Shoes, Amazon, Person, IMDB, Company, All-xlarge, Person
and IMDB have 2,063, 6,874, 112,632, 214,736, 20,000 and 20,000
training tuple pairs, respectively. Note that the first four are open-
sourced benchmarks that do not require manual annotation.

Hyper-parameters.We adopted CNN with a fully connected layer
of 128 dimension for 𝜋𝜃 . The learning rate is 3e-4. The training
(resp. validation) batch size is 64 (resp. 1000) for AER and 𝜋𝜃 . We
set𝑚 = 5 as the maximum number of enriched attributes, 𝑘 = 3 as
the maximum length of path patterns, 𝐾 = 3 as the number of HER
matches in V𝑡 , 𝐼 = 200 as the batch number. For HER, we used
30K, 30K, 233K, 185K, 30K and 50K tuples from 𝐷 and paths from
𝐺 to pre-train SentBert in Shoes, Amazon, Company, All-xlarge,
Person and IMDB, respectively, in an unsupervised manner.

Baselines.We implemented SchemaEnr in Python, and BEnrich and
IncEnrich in Java. We used the following baselines. (1) Base, an ER
baseline that does not enrich schema; it fine-tunes AER in instance
𝑆 of 𝑅 = (𝐴) and tests AER in instance 𝑈 of 𝑅. (2) RS, a sampling
method that randomly selects𝑚 paths from𝐺 , i.e., schema 𝑅 = (𝐴)
is enriched with𝑚 new attributes. (3) Full, an ER baseline that en-
riches schema 𝑅 with all extractable features/paths from 𝐺 ; since
AER only allows at most 512 tokens as input [86], we truncated
the enriched features to the maximum size. (4) MI [30], a heuristic
method that greedily selects 𝑚 paths from 𝐺 as the enriched at-
tributes to maximize the mutual information. (5) AutoFeature [88],
a feature augmentation method that selects features from data lakes
using DQN; we revised it so that it could select paths from KGs. (6)

L2X [35], a feature selection method that adopts mutual informa-
tion and Gumbel-softmax. For all SEmethods (except Base),AER is
fine-tuned and evaluated in the enriched training and testing sets.

We also tested the following variants: (7) SchemaEnrnoA, which
separately learnsAER and then trains 𝜋𝜃 . (8) SchemaEnrk=1, which
only considers paths of length 1 from𝐺 as features for enrichment,
i.e.,𝑘 = 1. (9)BEnrichnoB, which uses the brute-forceHER, such that
for each 𝑡 in 𝐷 , all vertices in𝐺 that share at least one non-frequent
token with 𝑡 are taken as HER matches of 𝑡 . For a fair comparison,
we use the same HER method for all baselines whenever possible.

Updates. In IE, we randomly deleted and inserted tuples of 𝐷 as Δ𝐷 ,
where the inserted tuples are existing ones in 𝐷 by replacing a few
attribute values. Similarly, we constructed Δ𝐺 by randomly deleting
and inserting edges 𝑒 = (𝑣1, 𝑣2) with label 𝑙 in 𝐺 , where 𝑣1, 𝑣2 ∈ 𝑉
and 𝑙 = 𝐿(𝑒). We set |Δ𝐷 | = 10%|𝐷 | and |Δ𝐺 | = 10%|𝐺 | by default.

Configuration.We conducted the experiments of BE, IE and SE on
a single machine powered by 256GB RAM and 32 processors with
Intel(R) Xeon(R) Gold 5320 CPU @2.20GHz and Tesla V100 GPUs.
Each experiment was run 3 times, and the average is reported here.

Exp-1: Effectiveness We evaluated SchemaEnr in terms of (1)
the accuracy F1 of AER; (2) the impact of increasing attributes and
lengths of paths; and (3) the impact of HER (see more in [10]).

Accuracy vs. baselines. We tested SchemaEnr in Figure 6(a)-6(f).

(1) SchemaEnr is 4.6% and 5.8% more accurate than SchemaEnrnoA
and SchemaEnrk=1 (not shown) on average. This shows the need for
the joint training strategy and exploration of multi-hop paths from
𝐺 in SchemaEnr. Learning AER with only 𝐴 does not generalize
well to enriched data of schema (𝐴, 𝐵), and joint training of AER
and 𝜋𝜃 rectifies this. SchemaEnr searches longer paths in 𝐺 and is
able to fetch more informative features than SchemaEnrk=1.
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(2) SchemaEnr consistently beats Base, Full and RS by 15.4%, 19%
and 13.4% on average, up to 33%, 65% and 29%, respectively. (a)
The results indicate that adding more useful contextual informa-
tion to ER models could increase its accuracy. Note that Ditto and
PromptEM are not very accurate on Person and IMDB because the
datasets miss some critical attributes for these ER models to distin-
guish two entities. In contrast, SchemaEnr does better by enriching
the schemas with attributes that are not “pseudo-keys” but carry
distinguishable values for the entities (see a case study shortly). (b)
The learned policy 𝜋𝜃 can find better paths from 𝐺 (𝐵-attributes)
than random selection. (c) Full does not perform very well, e.g., its
F1 is 20% lower than Base in Amazon. This is because some paths
yield low-quality features or null values, leading to the degradation
of AER. (d) For a similar reason, RS does not always outperform
Base, e.g., the F1 of RS (resp.Base) is 0.49 (resp. 0.53) on IMDBwhen
𝑚 = 2. (e) Although Base already performs very well on Company
and All-xlarge, achieving 0.89 and 0.94 F1 on average, respectively,
SchemaEnr could still leverage knowledge graphs to identify dis-
tinguishable features for further improving up to 7.6% F1 of AER.
(3) SchemaEnr consistently outperformsMI, AutoFeature and L2X,
e.g., its F1 is 7.1%, 5.2% and 14.6% higher than the baselines on
average, respectively. This is because SchemaEnr finds high-quality
paths to improve the ER model AER with the warm-up and mask
strategies, while AutoFeature is not designed for path selection and
it often misses distinguishing attributes, andMI selects each feature
independently, leading to redundant and misleading features. Al-
though L2X selects features forAER, it employs Gumbel-softmax to
select paths in a single step, yielding indistinguishable attributes in
most cases (see a case study shortly). Moreover, SchemaEnr is able
to support any AER while L2X requires AER to be differentiable.

Varying𝑚. We varied 𝑚 = |𝐵 | from 1 to 7 in Figures 6(g)-6(h).
As𝑚 increases, SchemaEnr initially gets more accurate, e.g., its F1
increases from 0.674 to 0.860 on IMDBwhen𝑚 is from 1 to 5. Hence
it is able to improve the downstreamAER by adding distinguishing
attributes from𝐺 . However, its F1 drops as𝑚 continues to increase,
e.g., it reduces to 0.819 when 𝑚 = 7 on IMDB, because when 𝑚
reaches, e.g., 5 on IMDB, the enriched attributes are enough to learn
AER well, and further increasing𝑚 no longer improves F1; it even
reduces F1, since there are more “noisy” features, i.e., meaningless
paths in the search space when𝑚 is too large, e.g., 7. In contrast,
the F1 of the baselines may fluctuate, especially when𝑚 is large.

Varying 𝑘 . As shown in Figure 6(i), we varied 𝑘 from 1 to 3. The
F1 of SchemaEnr increases when 𝑘 gets larger, e.g., 0.84 to 0.95.
Although the ratio of null values slightly increases as 𝑘 increases,
e.g., 35%, 38% and 39% for 𝑘 = 1, 2 and 3, respectively, SchemaEnr
is flexible enough to select suitable paths in𝐺 and it becomes more
accurate. This verifies the need for a reasonably large 𝑘 , e.g., 𝑘 = 3.
SchemaEnr is 12% more accurate than the best of the baselines on
average, up to 18%. This verifies that SchemaEnr is able to find dis-
tinguishing attributes from𝐺 and still has relatively high accuracy
in a large search space. AutoFeature, the best baseline, fails to find
3-hop paths because it cannot extract fine-grained paths in graphs.

Impact of HER.We tested the accuracy of ourHERmethod (Section
4.1), defined as the ratio of matched and mismatched tuple-vertex
pairs correctly identified to all pairs identified. Since there is no

Table 3: Case study on Person for𝑚 = 5 and 𝑘 = 3
Method �̄� Path pattern (where variables are omitted) MF1 ΔF1

SchemaEnr

𝐵1 𝜌1=(place-of-birth) +27% +27%
𝐵2 𝜌2=(place-of-birth, country) +2% +29%
𝐵3 𝜌3=(place-of-birth, located-in-territorial-entity) +1% +30%
𝐵4 𝜌4=(languages, has-grammatical-mood) +1% +31%
𝐵5 𝜌5=(country-of-citizenship, language-used) +1% +32%

MI

𝐵1 𝜌6=(country-of-citizenship, contains-territorial-entry) -5% -5%
𝐵2 𝜌7=(country-of-citizenship, diplomatic-relation) +7% +2%
𝐵3 𝜌3=(place-of-birth, located-in-territorial-entity) +20% +22%
𝐵4 𝜌8=(country-of-citizenship, diplomatic-relation, language-used) -1% +21%
𝐵5 𝜌15=(country-of-citizenship, capital, twinned-admin-body) +2% +23%

AutoFeature 𝐵1 𝜌3=(place-of-birth, located-in-territorial-entity) +3% +3%
𝐵2 𝜌9=(country-of-citizenship, category-for-people-died-here) +20% +23%

L2X

𝐵1 𝜌10=(publisher) -0.1% -0.1%
𝐵2 𝜌11=(partner-in-business-sport) -0.1% -0.2%
𝐵3 𝜌12=(significant-person) +2.2% +2%
𝐵4 𝜌13=(country-for-sport) +2% +4%
𝐵5 𝜌14=(topic-main-template) +0% +4%

ground truth for HER matches, we sampled a subset of tuples, and
used Jaccard similarity to retrieve the top-𝐾 vertices in 𝐺 for each
sampled tuple. We manually labeled these pairs as either match or
mismatch, 2,545 in total. The results show that on average the HER
accuracy is 0.94, and matches are correctly identified in most cases.

To further test the impact of HER, we introduce a noise pa-
rameter 𝛽%. We randomly selected 𝛽% of tuples, replaced their
top-𝐾 matches by mismatched vertices, and enriched from the mis-
matches. As expected, SchemaEnr gets less accurate when more
noises present, since it is hard for “wrong” vertices to provide cor-
rect features for improving AER. When 𝛽% = 60%, the accuracy of
SchemaEnr drops to 0.751. This justifies the need for accurate HER.

Varying 𝐾 . Varying 𝐾 from 1 to 9 in Figure 6(k), SchemaEnr gets
higher F1 when 𝐾 increases from 1 to 3, since initially a larger 𝐾 al-
lows SchemaEnr to find good and diverse features. However, when
𝐾 exceeds a large value, e.g., 5, SchemaEnr performs worse because
more noises are involved, increasing the difficulty to learn 𝜋𝜃 .
Trade-off test. We reported the trade-off between the number𝑚 of
enriched attributes and the size of training set 𝑆 in SchemaEnr,
using a heatmap in Figure 6(l), varying |𝑆 | from 20% to 100% and𝑚
from 1 to 5. The F1 in each setting is visualized by the color of a cell
in heatmap, where a higher F1 is shown darker. To achieve similar
accuracy (i.e., similar colors), SchemaEnr needs less training data
when more distinguishing attributes are enriched, e.g., to make
F1 around 0.75, we need 60% training tuples when the tuples are
enriched with 1 attributes, as opposed to 20% training tuples for
𝑚 = 5. In other words, by enriching tuples with 4 more attributes,
we save 40% training data for AER, maintaining similar accuracy.
Case study. We showcased attributes 𝐵 enriched from each method
for𝑚 = 5 and 𝑘 = 3 on Person in Table 3, where each 𝐵𝑖 (𝑖 ∈ [1, 5])
is accompanied with its path pattern 𝜌 (also referred as attributes for
simplicity), the accuracy improvement ΔF1 ofAER (see Section 3.1)
when the first 𝑖 attributes are enriched, and the marginal accuracy
improvement of AER, denoted byMF1, when 𝐵𝑖 itself is enriched.
(1) The attributes enriched by SchemaEnr are distinguishable, e.g.,
𝜌1 alone is able to improve the F1 by 27%. Although the marginal
improvement of 𝜌2-𝜌4 is less than 𝜌1, this is reasonable since even
1% of improvement on F1 is hard when the accuracy is high enough.
In contrast, most attributes from other baselines have small and
even negative impact onAER, e.g., 𝜌6 fromMI reduces the F1 by 5%.
(2) Note that 𝜌4 and 𝜌5 are not pseudo-keys for persons, e.g., two per-
sons can both be citizens fromEnglish-speaking countries. However,
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Figure 7: Efficiency and scalability

they are useful for distinguishing persons, e.g., if two persons are
from countries with different languages, they are often mismatched.
(3) The baselines miss good attributes. (a)MI introduces redundant
or misleading features that hamper the accuracy ofAER (e.g., 𝜌6 and
𝜌8), since it does not consider attributes enriched previously when
selecting the next attribute. (b)AutoFeature tends to explore unseen
paths in 𝐺 , but may overlook simple but distinguishable attributes,
e.g., 𝜌1. Besides, it often misses complicated combinations of paths
and thus only finds two attributes. (c) L2X adds all attributes in one
step, yielding attributes that are indistinguishable, e.g., 𝜌10.

Exp-2 Efficiency. We evaluated the (training and inference) time.
Varying𝑚. In Figure 7(a) when varying𝑚 from 1 to 7, SchemaEnr
takes longer since its search space expands with𝑚, e.g., from 1402s
to 3272s when𝑚 is from 1 to 4 on Person. This justifies the need of
budget𝑚 for enrichment. SchemaEnr is not the fastest learner, e.g.,
it is 1.27X slower than L2X on average. This is because SchemaEnr
simultaneously learns AER and 𝜋𝜃 , and its reinforcement learning
needs to explore plenty of paths in 𝐺 to be accurate. This said, the
gap between the two is not very large, and SchemaEnr is more ac-
curate than L2X. SchemaEnr is slower than RS, Full andMI, which
are based on simple heuristic with the price of lower accuracy.
Varying 𝑘 . In Figures 7(b), we varied 𝑘 from 1 to 3. Similar to𝑚, the
running time of SchemaEnr increases as 𝑘 gets larger, as expected,
e.g., it takes from 3331s to 4531s when 𝑘 is from 1 to 3 in IMDB.
Although the search space grows exponentially, SchemaEnr does
not get much slower due to the mask strategy, e.g., the runtime
of 𝑘 = 2 is only 1.1X slower than that of 𝑘 = 1. Considering the
significant improvement of F1, the need for 𝑘 > 1 is justified. We
find that when 𝑘 = 3, it suffices to find sensible matches; this echoes
the finding of [21, 75] that longer paths hold weaker associations.
Varying 𝐾 . We varied 𝐾 from 1 to 9 in Figure 7(c). As expected, as
𝐾 increases, the running time of SchemaEnr increases, e.g., it takes
from 2,002s to 2,663s when 𝐾 is from 1 to 9. Nevertheless, it is not
much slower, indicating that SchemaEnr is able to handle large 𝐾 .

Joint training. We also revised SchemaEnr by iteratively training
𝜋𝜃 and AER separately, and compared it with the joint training
strategy (Figure 3) in IMDB and Person. Joint training is 2.45X

faster than iteratively training on average; this justifies the need
for joint training to speedup the schema enrichment process.

Exp-3 Scalability. When the enriched schema is in place, we com-
pared the efficiency ofBEnrich vs.BEnrichnoB for batch enrichment,
and IncEnrich vs. BEnrich for incremental enrichment.

Varying |𝐷 |.We varied the dataset size |𝐷 | from 20% to 100%, and
compared BEnrich and BEnrichnoB in Figure 7(d). Both take longer
with larger 𝐷 because they need to enrich more tuples from knowl-
edge graphs. Nonetheless, BEnrich is 6.07X faster than BEnrichnoB
on average, which verifies the need for efficient HER methods.

Varying |𝐺 |. As shown in Figure 7(e) by varying |𝐺 | from 20% to
100%, the runtime of all methods increases when |𝐺 | gets larger, e.g.,
BEnrich takes 141s and 563s when |𝐺 | is 20% and 80%, respectively.
BEnrich is still 5.94X faster than the baseline on average.

Varying𝑚. Varying 𝑚 from 1 to 5 in Figure 7(f), BEnrich gets
slightly slower with larger𝑚; similarly when varying path length
𝑘 (not shown); i.e., BEnrich is not very sensitive to𝑚 and 𝑘 .

Varying |Δ𝐷 |. Fixing |Δ𝐺 | = 10% and varying |Δ𝐷 |, we show the
runtime of IncEnrich and BEnrich in Figure 7(g). IncEnrich con-
stantly beats its batch counterpart BEnrich. On average IncEnrich
is 5.9X faster than BEnrich, since it enriches only tuples in Δ𝐷 , not
the entire 𝐷 . Note that it is more costly to handle Δ𝐺 (= 10%) than
Δ𝐷 (= 10%) , since |𝐺 | is much larger than |𝐷 | in IMDB.

Varying |Δ𝐺 |. Fixing |Δ𝐷 | = 10%, we varied the number of edge
updates |Δ𝐺 | to𝐺 in Figure 7(h). IncEnrich beats BEnrich by 4.77X
on average when Δ𝐺 varies from 5% to 20%, and by 6.28X when
|Δ𝐺 | = 5%|𝐺 |. It is faster than BEnrich even when Δ𝐺 is up to 20%
of Person and IMDB (not shown). This shows the effectiveness of
incremental enrichment that focuses on affected paths.
Summary. We find the following. (1) SchemaEnr (schema enrich-
ment) improves the accuracy of ER, e.g., its F1 increases from 0.674
to 0.86 on IMDB with 4 more attributes. (2) It consistently out-
performs the baselines, e.g., on average it is 7.1%, 5.2% and 14.6%
more accurate than MI, AutoFeature and L2X, respectively. (3) It
beats all its variants, verifying e.g., the benefit of joint training vs.
SchemaEnrnoA. (4) Our policy 𝜋𝜃 is robust and finds distinguishing
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attributes from 𝐺 . (5) Data (batch, incremental) enrichment scales
well with different parameters, e.g., BEnrich is 5.94X faster than
the baselines on IMDB when 𝐾 = 3 and it is only 1.1X slower when
𝑚 varies from 1 to 5. (6) Incremental IncEnrich constantly beats the
batch one, e.g., when |Δ𝐺 | = 5%|𝐺 |, it is 6.28X faster than BEnrich.

7 RELATEDWORK
Feature augmentation. Prior work can be classified as follows.
(1) Join-based. [44, 69, 82, 106, 109, 138] enrich tables by joining
external tables in data lakes. (2) Table discovery and union search.
PEXSEO [44] proposes a framework for joinable table discovery
via similarity join. Josie [138] designs an overlap set similarity
method to find joinable tables. [135] discovers related tables in a
human-in-the-loop manner. COCOA [46] adopts a light-weight
index to accelerate tabular enrichment. [76] and [97] find tables
that are unionable in data lakes based on the semantics of meta-
data or attribute correlations. Starmie [47] finds unionable tables
via contrastive learning to train column encoders. (3) Knowledge
based, to enrich tabular data with KGs [42, 57, 63, 94], text [63, 64],
information space [43], data warehouse [22], Web data [59] and
rule injection [86]. (4) ML based methods. AugDiff [110] proposes
a diffusion-based framework for multiple instance learning. [36]
adopts the auto-encoder neural network to transform raw images
with augmented features. [136] proposes spectral feature augmen-
tation to boost contrastive learning. [85] adopts transformation
functions for augmentation. (5) Model-aware methods, for optimiz-
ing downstream models, e.g., AutoFeature [88] applies multi-armed
bandit and DQN strategies to get useful features for ML models,
[123] selects coresets to make ML feature rich without material-
ization, ARDA [37] extends datasets by joining correlated tables
via coreset and feature selection, Leva [137] transforms tables to
graphs and learns embeddings to improve downstream tasks, and
[82, 109] explore key-foreign key joins on ML classifiers.

This work differs from the prior work in the following. (1) While
some existing methods also incorporate knowledge (e.g., KGs [57,
63, 94]) for feature augmentation, they are not application-aware,
i.e., these methods are not designated to improve the performance
of a specific type of downstream tasks, while we enrich incomplete
schema with bounded attributes to maximize the accuracy of ER.
(2) Although [37, 82, 88, 123, 137] optimize for downstream models,
they target routine models, not black-box ER models, and focus on
finding coarse-grained joinable tables in data lakes, whose schemas
are already in place. When adapted to schema enrichment, they
encounter issues such as the exponential number of paths, lack
of support of textual data, high costs, and outputs that cannot be
accepted by AER. In contrast, we extract additional fine-grained
attributes via paths from KGs to improve ER. This requires us to (a)
construct proper attributes from the exponential edge combinations
for composing paths, and (b) jointly train the policy and the ER
method to be robust to different distributions of the enriched data.

Feature selection. Also related are prior methods for feature se-
lection, classified as follows. (1) Filter methods, which rank fea-
tures based on, e.g., correlation criteria [62], mutual informa-
tion [30, 35, 78], relief [121], markov blanket [73, 140], etc. Filter
methods are fast and model-agnostic, but their features are selected
independently. (2)Wrapper methods,which search a suboptimal sub-

set of features so that models have the best validation performance,
e.g., sequential selection methods [20, 115] and evolutionary algo-
rithms [93, 118, 120]. Such methods find better optimized features,
while they incur large cost for exploring the feature space. (3) Em-
bedded methods, which embed feature selection into the learning of
downstream ML models, where regularization strategies are widely
adopted, including LASSO [119], Ridge [67] and Elastic Net [139].
As a trade-off between filter and wrapper methods, embedded meth-
ods could find a fairly good subset of features in a short time.

Our work differs from feature selection methods as follows. (1)
We aim at improving the accuracy of black-box ERmodels. (2)While
existing methods focus on selecting a subset of given features from
a given collection of features, we have to discover features and
find good paths in knowledge graphs for composing attributes, via
reinforcement learning. (3) We propose three criteria for measuring
the paths, namely, diversity, completeness and distinguishability.
Missing values imputation. Imputation methods are proposed
to utilize knowledge. (1) Internal knowledge, to impute values using
rules, e.g., FDs, CFDs [50], DCs [25], PFDs [100] and REEs [55, 56];
ML models, e.g., Baran [90], HoloClean [105, 128], PClean [83] and
Restore [66] for relational tables, ORBITS [77] and DeepMVI [29]
for time series, andGAIN [129] andGINN [117] for images. (2)Mas-
ter data. [40, 49, 54] correct errors in relations by referencing master
data and [55] adopts the chase to correct errors. (3)Knowledge graph.
FROG [101] proposes imputation methods with complex semantics
from knowledge graphs. HER methods, e.g., JedAI [98], parametric
simulation [51], Silk [72] andMAGNN [58], link tuples in relations
to vertices in graph. Other entity linking methods, e.g., [87, 103],
also exist (see [108] for a survey). (4) Large language models. [96]
uses GPT-3 to impute missing values by proper prompt templates.

While the prior work focuses on missing values for a given
schema, we impute incomplete schema, and propose joint training
and reinforcement learning for it. For data enrichment, we support
both batch and incremental modes, with the parallel scalability.
ENRICH supports various HER methods for tuple-vertex matching.
ER. There are plenty of ML-based ER models (surveyed in [38]),
which adopt neural networks, attention, RNN and language models.
All can be plugged into our scheme as downstream ER models.

8 CONCLUSION
The work is novel in that it (1) studies a new problem of relation
enrichment, and settles the complexity of schema enrichment and
data (batch, incremental) enrichment; (2) proposes a method to
enrich schema by reinforcement learning of a robust policy, data
extraction from knowledge graphs, and joint training of the policy
and ER models; and (3) develops algorithms for (incremental) en-
richment, with the parallel scalability. Our experimental study has
verified that the method is promising in improving ER accuracy.

One topic for future work is to collectively enrich multiple rela-
tions beyond a single relation. Another topic is to extend ENRICH
for improving the accuracy and fairness of ML models beyond ER.
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