
AutoCTS: Automated Correlated Time Series Forecasting
Xinle Wu1, Dalin Zhang1, Chenjuan Guo1, Chaoyang He2, Bin Yang1∗, Christian S. Jensen1

1Aalborg University, Denmark 2University of Southern California, USA
1{xinlewu, dalinz, cguo, byang, csj}@cs.aau.dk 2chaoyang.he@usc.edu

ABSTRACT
Correlated time series (CTS) forecasting plays an essential role in
many cyber-physical systems, where multiple sensors emit time
series that capture interconnected processes. Solutions based on
deep learning that deliver state-of-the-art CTS forecasting perfor-
mance employ a variety of spatio-temporal (ST) blocks that are able
to model temporal dependencies and spatial correlations among
time series. However, two challenges remain. First, ST-blocks are
designed manually, which is time consuming and costly. Second,
existing forecasting models simply stack the same ST-blocks mul-
tiple times, which limits the model potential. To address these
challenges, we propose AutoCTS that is able to automatically iden-
tify highly competitive ST-blocks as well as forecasting models
with heterogeneous ST-blocks connected using diverse topologies,
as opposed to the same ST-blocks connected using simple stack-
ing. Specifically, we design both a micro and a macro search space
to model possible architectures of ST-blocks and the connections
among heterogeneous ST-blocks, and we provide a search strat-
egy that is able to jointly explore the search spaces to identify
optimal forecasting models. Extensive experiments on eight com-
monly used CTS forecasting benchmark datasets justify our design
choices and demonstrate that AutoCTS is capable of automatically
discovering forecasting models that outperform state-of-the-art
human-designed models.

PVLDB Reference Format:
Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, Christian
S. Jensen. AutoCTS: Automated Correlated Time Series Forecasting.
PVLDB, 15(4): 971-983, 2022.
doi:10.14778/3503585.3503604

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/WXL520/AutoCTS.

1 INTRODUCTION
We are witnessing continued developments in sensor technologies
in cyber-physical systems (CPS), where sensors produce correlated
time series [5, 15]. For example, in transportation, traffic sensors
embedded in roads emit multiple traffic time series that record
traffic flows at their locations across time. Since the traffic on a road
is often correlated with the traffic on nearby roads, the traffic time
series are often correlated [35]. Forecasting on correlated time series

∗ : Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503604

plays an essential role in ensuring effective operation of CPSs, such
as identifying trends, predicting future behavior [7], and detecting
outliers [2]. For instance, traffic time series forecasting can improve
vehicle routing in transportation systems [13, 29, 36, 50].

By considering both temporal dependencies in time series and
spatial correlations among different time series, recent deep learning
models demonstrate impressive performance on correlated time
series forecasting. Temporal dependencies capture how historical
values influence future values. We use “spatial correlations” because
the correlations among time series are often due to the proximity of
the locations in which the sensors that generate the time series are
deployed, but correlations may also be due to other factors. More
specifically, correlated time series are modeled as a spatio-temporal
(ST) graph, where nodes represent time series, and edges represent
spatial correlations between pairs of time series [6, 44, 48].

Based on the above ST-graph modeling, different models are
proposed to enable forecasting. Figure 1(a) summarizes existing
forecasting models, which often include (1) an embedding layer that
transforms the input time series data, (2) a ST-backbone that consists
of a stack of multiple ST-blocks that are able to extract appropriate
spatio-temporal features from the embedded time series data, and
(3) an output layer that produces a final forecasting based on the
features extracted by the ST-backbone.

Different studies propose unique ST-blocks that are responsi-
ble for the capture of both the temporal dependencies and spatial
correlations [7, 9, 11, 14, 16, 24, 28, 45, 46, 51, 52]. For example,
STGCN [51] employs a “sandwich” ST-block that includes two tem-
poral convolutions, which model temporal dependencies, with one
graph convolution in-between, which captures spatial correlations;
and Graph Wavenet [45] uses a simpler ST-block that first employs
gated temporal convolution to model temporal dependencies and
then uses graph convolution to capture spatial correlations.

(a) Existing Model.

(b) Example from the Proposed Model Space.

Figure 1: Existing vs. Proposed CTS Forecasting Models, with
Different ST-blocks Colored Differently.

971

https://doi.org/10.14778/3503585.3503604
https://github.com/WXL520/AutoCTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503604
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Although various forecasting models have been proposed to
improve the state-of-the-art accuracy, two major limitations remain.
Manually Designed ST-blocks. Existing studies rely on human
expertise to design effective ST-blocks, which is both inefficient,
often taking weeks or months, and costly. In addition, as a large
number of operators exist that are able to capture temporal depen-
dencies (i.e., T-operators) and spatial correlations (i.e., S-operators),
the search space for designing ST-blocks is very large. Thus, it is
almost impossible for humans to be able to identify an optimal com-
bination of T/S-operators, thus potentially missing ST-blocks with
high effectiveness. Further, rapid developments in machine learning
are likely to lead to the invention of new, competitive operators.
In order to benefit from new operators, it is necessary to reiterate
the inefficient and costly manual design process whenever a new
operator becomes available. Next, since time series from different
domains have different characteristics, it is very difficult to design
an ST-block that works well on substantially different datasets. To
contend with these limitations, an automated design process that is
able to identify optimal ST-blocks from a configurable search space
of T/S-operators for specific datasets is called for.
ST-backbonewith Stacking,Homogeneous ST-blocks. Existing
forecasting models often have an ST-backbone that stacks the same
ST-blocks sequentially multiple times to achieve “deeper” models
that are better at capturing complex dependencies and correlations,
as shown in Figure 1(a). We hypothesize that ST-backbones with
heterogeneous ST-blocks connected by more flexible topologies, as
exemplified in Figure 1(b), hold the potential to yield higher ac-
curacy. Here, different ST-blocks, instead of same ST-blocks, can
be connected using arbitrary topologies rather than by sequential
stacking only. Intuitively, different ST-blocks may extract distinct
features, which may enable more diverse and thus potentially better
representations of time series. Supporting multiple topologies of-
fers added flexibility, thus contributing further to enabling diverse
models, which may enhance accuracy and stability. However, con-
sidering topologically flexible, heterogeneous ST-blocks increases
the search space when designing forecastingmodels, thus rendering
manual design more difficult and time-consuming. This naturally
calls for an automated design approach.

Although Neural Architecture Search (NAS), a technology that
automatically learns neural architectures [10], is able to outperform
human-designed architectures on various tasks in computer vision
(CV) [30, 37] and natural language processing (NLP) [42], existing
NAS methods fail to offer automated solutions capable of solving
the aforementioned two limitations. First, no well-defined search
space exists for correlated time series forecasting, as existing NAS
methods often focus on CV and NLP. Directly using the search
space designed for other domains fails to identify ST-blocks with
high potential for capturing both temporal dependencies and spa-
tial correlations. Directly using all existing S/T-operators in the
literature yields an extremely large search space, thus making it
very difficult and time-consuming to identify promising ST-blocks.
Second, most existing NAS methods focus on identifying an opti-
mal cell, e.g., an ST-block in our setting, while assuming a fixed
topology, e.g., stacking the same ST-blocks as shown in Figure 1(a),
for connecting multiple instances of the same cell to derive the
final model [10, 30, 37]. This fails to address the second limitation
of manually designed forecasting models.

We propose AutoCTS that is able to not only automatically de-
sign ST-blocks but also ST-backbones with complex topologies that
connect heterogeneous ST-blocks, thus addressing the two limita-
tions. We first design a micro search space targeting ST-blocks that
models operators and how different operators are connected using a
graph. To enable effective and efficient search, we judiciously select
a compact set of T-operators that model temporal dependencies and
S-operators that model spatial correlations based on a thorough
analysis of existing, manually designed ST-blocks. This enables us
to automatically identify highly competitive ST-blocks in the pro-
posed micro search space, thus addressing the first limitation. Next,
we propose a macro search space, along with a joint search strategy
that allows searches for an optimal topology among heterogeneous
ST-blocks. This addresses the second limitation.

To the best of our knowledge, this is the first study that system-
atically investigates automated correlated time series forecasting
by exploring jointly the neural architectures of ST-blocks and ST-
backbones. The study makes three contributions. First, we carefully
design a micro search space for correlated time series forecasting,
including both T-operators and S-operators, along with a search
strategy that is able to identify optimal ST-blocks from the micro
search space. Second, we propose a macro search space, along with
a joint search strategy that searches both ST-blocks and forecasting
models, while allowing flexible topologies among heterogeneous
ST-blocks. Third, we conduct extensive experiments on correlated
time series from different application domains to offer insight into
and justify our design choices, demonstrating also that our proposal
is able to outperform state-of-the-art methods.

2 PRELIMINARIES
We introduce correlated time series forecasting, cover concepts that
are necessary for the paper’s proposal, and formalize the problem.
Correlated Time Series. Consider 𝑁 correlated multivariate time
series X ∈ R𝑁×𝑇×𝐹 , where each time series covers 𝑇 timestamps
and each timestamp is associated with 𝐹 features. For example,
assuming that 100 sensors are deployed in a road network and each
sensor reports both travel speed and traffic flow every 5 minutes.
Then, for one day, we have correlated time series X ∈ R100×288×2
with 𝑁 = 100 time series covering 𝑇 = 288 timestamps and 𝐹 = 2
features. We use𝑿 (𝑖) ∈ R𝑇×𝐹 to indicate the 𝑖-th time series, where
1 ≤ 𝑖 ≤ 𝑁 , and 𝑿𝑡 ∈ R𝑁×𝐹 to indicate the features from all time
series at timestamp 𝑡 , where 1 ≤ 𝑡 ≤ 𝑇 .

To model spatial correlations among different time series, we
introduce a graph 𝐺 = (𝑉 , 𝐸,𝐴), where each vertex in 𝑉 corre-
sponds to a time series so that |𝑉 | = 𝑁 , edges in 𝐸 represent spatial
correlations between different time series, and adjacency matrix
𝐴 ∈ R𝑁×𝑁 contains edge weights that reflect the strengths of the
spatial correlations between time series. The edge weights are ei-
ther predefined, e.g., based on the distances between the locations
of the sensors that generate the time series [28, 40, 45], or learned
in a data-driven manner [1, 6, 44].
Correlated Time Series Forecasting. We consider both single-
step and multi-step correlated time series forecasting. Given the
past 𝑃 steps, (1) for the single step forecasting, we predict the 𝑄-
th future step, where 𝑄 ≥ 1; (2) for the multi-step forecasting, we
predict a total of𝑄 future steps, with𝑄 > 1. Formally, we define the

972

Figure 2: AutoCTS Overview.

single-step correlated time series forecasting problem as follows:

�̂�𝑡+𝑃+𝑄 = F𝑤 (𝑿𝑡+1,𝑿𝑡+2, ...,𝑿𝑡+𝑃 ;𝐺) (1)

where F𝑤 is a forecasting model and 𝑤 is its learnable parame-
ters; and �̂� represents forecasted values. Likewise, the multi-step
correlated time series forecasting problem is defined as follows:

{�̂�𝑡+𝑃+1, �̂�𝑡+𝑃+2, ..., �̂�𝑡+𝑃+𝑄 } = F𝑤 (𝑿𝑡+1,𝑿𝑡+2, ...,𝑿𝑡+𝑃 ;𝐺) (2)

Problem Definition. The goal of the paper is to automatically
identify an accurate forecasting model F𝑤 . This includes the identi-
fication of (1) architecture parameters 𝜃 that describe the model F ,
e.g., which operators that are used in different ST-blocks and how
the different ST-blocks are connected in the ST-backbone; and (2)
model parameters 𝑤 that are used in the different operators, e.g.,
kernels in convolution operators and the projection matrices in
attention operators. The objective function is show in Equation 3.

argmin𝜃,𝑤 ErrorMetric(F𝑤 ,D), (3)

where ErrorMetric(F𝑤 ,D) returns the forecasting error of themodel
F𝑤 that is learned on a training dataset D.

3 AUTOMATED CTS FORECASTING
Figure 2 offers an overview of the automated CTS forecasting frame-
work AutoCTS, which consists of three main components—an em-
bedding layer, an ST-backbone learning layer, and an output layer.

The embedding layer maps the original input feature from time
series 𝑋 to a high-dimensional representation 𝑍 , which facilities
extracting richer features from the input time series.

The ST-backbone learning layer, which is the core component of
AutoCTS, is able to automatically design ST-backbones that encom-
pass heterogeneous ST-blocks (as exemplified in Figure 2 (b)), where
the design of the heterogeneous ST-blocks is also automated (as ex-
emplified in Figure 2 (c)). When searching for ST-backbones, we use
parameter 𝛾 to parameterize the connections among different ST-
blocks. For example, 𝛾 (4) controls how the three connections from
ST-blocks 𝑏1, 𝑏2, and 𝑏3 connect to ST-block 𝑏4. When searching for
ST-blocks, we search both (1) the operators between two representa-
tions, parameterized by 𝛼 , and (2) the different possible connections
among different hidden representations, parameterized by 𝛽 . For

example, 𝛼 (0,3)
2 represents the operators between hidden represen-

tations ℎ0 and ℎ3 in ST-block 𝑏2, 𝛽
(3)
2 represents, in ST-block 𝑏2,

how the hidden representationsℎ0,ℎ1, andℎ2 connect to the hidden
representation ℎ3. We use unique sets of parameters {𝛼𝑖 , 𝛽𝑖 } such
that heterogeneous ST-blocks can be identified. The automatically
designed ST-backbone takes as input the high-dimensional repre-
sentation 𝑍 from the embedding layer and extracts spatio-temporal
features, which are fed to the output layer.

Finally, the output layer makes the forecasting 𝑋 . We use a
loss function, e.g., mean squared error, to measure the discrepancy
between the forecast w.r.t. the ground truth to enable learning.

In the following, we first identify an appropriate search gran-
ularity (in Section 3.1), then we introduce the design of a micro
search space for ST-blocks (in Section 3.2) and a macro search space
for ST-backbones (in Section 3.3). Finally, we present the search
strategy that explores the micro and macro search spaces jointly to
discover promising forecasting models (in Section 3.4).

3.1 Search Granularity
The search space can be constructed from operators of different
granularities. A search space based on fine-granularity operators
offers more flexibility and greater opportunities for identifying
promising neural architectures that cannot be identified by hu-
man experts, but it often also yields a very large search space, the
search of which takes prohibitively long time and requires exces-
sive computational resources. In contrast, a search space based on
coarse-granularity operators yields a smaller search space and thus
speeds up the search process, but it may also introduce human
biases that may prevent the identification of high-performance
architectures.

More specifically, in our problem setting, three different granular-
ities exist. From coarse to fine, they are ST-blocks, S/T operators,
and basic computations. We proceed to introduce the three gran-
ularities using a concrete example. Then, we discuss our design
choices related to choosing the appropriate search granularity.

Figure 3 shows the neural architecture of Spatio-Temporal Graph
Convolutional Networks (STGCN) [51], a human designed forecast-
ing model. The backbone of STGCN consists of two ST-blocks
that are stacked (cf. Figure 3(a)). An ST-block consists of three S/T

973

operators—two T-operators, i.e., gated convolutions, with an S-
operator in-between, i.e., a graph convolution, (cf. Figure 3(b)). An
S/T operator often consists of multiple basic computations. For
example, Figure 3(c) shows the architecture of gated convolution,
i.e., the T-operator. Here, 𝐼 and 𝜎 refer to an identity and a sigmoid
function, respectively; 𝐶𝑜𝑛𝑣 is the convolution operator, and × is
the element-wise product. These are all basic computations.

(a) ST-backbone (b) ST-block (c) Gated Convolution

Figure 3: Human Designed Forecasting Model: STGCN.

Based on the above, the coarsest search granularity is to use
existing, manually-designed ST-blocks as atomic search units in the
search space for finding novel ST-backbones. For example, instead
of using a stacking structure with homogeneous ST-blocks as shown
in Figure 3(a), it is possible to search for an ST-backbone with a
more flexible structure with many different human designed ST-
blocks as shown in Figure 1(b). However, since human designed
ST-blocks may contain human biases already, only searching the
different connections among them may limit the opportunities for
finding novel and high-performance backbones.

The next granularity is that of using, human designed S/T-operators
as atomic search units to search for novel ST-blocks. Since S/T-
operators are at a finer granularity than ST-blocks, this granularity
offers greater opportunities for discovering more powerful fore-
casting models that go beyond existing human designed models. In
addition, whenever a new S/T-operator is designed, the new S/T-
operator can be easily included in the search space. We consider
this as an appropriate granularity.

The finest search granularity is to use basic operations as atomic
search units to search for novel S/T operators. However, this leads
to a much larger search space than when using S/T operators as
the search space unit, incurs excessive computational costs, and
requires a very large dataset to enable effective training [31].

To find highly competitive forecasting models without requiring
high computational and memory costs, we choose to use S/T oper-
ators as the atomic search units in a so-called micro search space
to discover novel ST-blocks. Next, in the macro search space, we
use the automatically learned ST-blocks as atomic search units to
identify novel ST-backbones with flexible structures.

3.2 Micro Search Space
The micro search space defines the possible architectures of the
ST-blocks that can be discovered. We first introduce the design of
the micro search space and then explain how to reduce the size of
the micro search space to speed up search.

3.2.1 Micro-DAG. We assume that an ST-block includes𝑀 latent
representations. The first latent representation is the output repre-
sentation from the embedding layer or the output representation
of another ST-block. In addition, we consider a set O of operators,
e.g., including multiple S/T operators, that are able to transform
one latent representation to a new latent representation.

We represent the micro search space as a directed acyclic graph,
denoted as micro-DAG (see Figure 4). The micro-DAG has𝑀 nodes
ℎ𝑖 , 0 ≤ 𝑖 ≤ 𝑀 − 1, that each denotes a latent representation. Node
ℎ0 denotes the representation returned by the embedding layer.
For each node pair (ℎ𝑖 , ℎ 𝑗), we have |O| edges, where each edge
corresponds to an operator from operator set O. In Figure 4(a), as
O = {𝑜1, 𝑜2, 𝑜3} includes three operators, each node pair is associ-
ated with three edges. In addition, we only include edges from node
ℎ𝑖 to ℎ 𝑗 if 𝑖 < 𝑗 . This makes the graph a DAG, which simulates the
forward flow when training a neural network.

(a) Micro-DAG (b) Derived ST-block

Figure 4: Micro Search Space.

Figure 4(b) shows a derived ST-block, which is a subgraph of the
micro-DAG. Specifically, the derived ST-block only retains one edge,
i.e., one operator, between each node pair (ℎ𝑖 , ℎ 𝑗). In addition, for
each node, it preserves at most two incoming edges. This enables
relatively complex internal topologies for ST-blocks and avoids
introducing too many parameters.

The micro-DAG represents all possible architectures of an ST-
blockwith𝑀 latent representations. This design yields to |O|

𝑀 (𝑀−1)
2

possible ST-blocks. This is because a micro-DAG with𝑀 nodes has
𝑀 (𝑀−1)

2 node pairs (ℎ𝑖 , ℎ 𝑗), where 𝑖 < 𝑗 , and because each node
pair can be connected by an operator from O. In Section 3.2.3, we
discuss how to select a compact operator set O, thus reducing the
size of the micro search space without comprising effectiveness.

3.2.2 Parameterizing ST-blocks. In order to derive an optimal ST-
block, we introduce two sets of architecture parameters 𝛼 and 𝛽 ,
where 𝛼 parameterizes node pair and 𝛽 parameterizes nodes.

First, we parameterize each node pair (ℎ𝑖 , ℎ 𝑗) with vector𝛼 (𝑖, 𝑗) ∈
R |O | to indicate the weights over all operators in O. Then transfor-
mation 𝑓 (𝑖, 𝑗) from node ℎ𝑖 to node ℎ 𝑗 is formulated as a weighted
sum of all operators.

𝑓 (𝑖, 𝑗) =
∑︁
𝑜∈O

𝑒𝑥𝑝 (𝛼 (𝑖, 𝑗)
𝑜)∑

𝑜′∈O 𝑒𝑥𝑝 (𝛼 (𝑖, 𝑗)
𝑜′)

𝑜 (ℎ𝑖), (4)

974

where 𝛼 (𝑖, 𝑗)
𝑜 represents the weight of operator 𝑜 ∈ O, which is to

be learned, and 𝑜 (ℎ𝑖) is the representation after applying operator
𝑜 to representation ℎ𝑖 .

Next, we parameterize each node based on its incoming edges.
We use another architecture parameter 𝛽 (𝑗) ∈ R𝑗 to assign weights
to the incoming edge groups at node ℎ 𝑗 , where each incoming edge
group represents a hidden representation from a node ℎ𝑖 , where
0 ≤ 𝑖 < 𝑗 − 1. For example, in Figure 4, node ℎ3 has three incoming
edge groups from ℎ0, ℎ1, and ℎ2, respectively. We then apply a
softmax function to normalize the 𝛽 parameter. If 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝛽 (3)) =
(0.3, 0.3, 0.4), it means that the weights of the representations from
ℎ0, ℎ1, and ℎ2 are 0.3, 0.3, and 0.4, respectively. Therefore, for each
node ℎ 𝑗 , we can compute its representation as the weighted sum of
all transformations of its predecessor nodes.

ℎ 𝑗 =
∑︁
𝑖< 𝑗

𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])∑
𝑖< 𝑗 𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])

𝑓 (𝑖, 𝑗) (5)

=
∑︁
𝑖< 𝑗

𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])∑
𝑖< 𝑗 𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])

∑︁
𝑜∈O

𝑒𝑥𝑝 (𝛼𝑖, 𝑗𝑜)∑
𝑜′∈O 𝑒𝑥𝑝 (𝛼𝑖, 𝑗

𝑜′)
𝑜 (ℎ𝑖), (6)

where 𝛽 (𝑗) [𝑖] is the architecture parameter value for weighting the
transformation from ℎ𝑖 to ℎ 𝑗 , which is to be learned.

In this way, given the first node ℎ0, we are able to compute
the representations of the remaining nodes in the micro-DAG. We
use the representation of the last node ℎ𝑀−1 as the output of the
micro-DAG, and we thus feed ℎ𝑀−1 to the output layer. This gives a
forecasting model that we can train using classic back propagation.
The training enables us to identify the most appropriate 𝛼 and 𝛽 .

After training, we derive the final ST-block. For each node pair
(ℎ𝑖 , ℎ 𝑗), we compute a weight𝑤 (𝑖, 𝑗)

𝑜 using Eq. 7 for each operator 𝑜 ,
and retain the operatorwith the largest𝑤 (𝑖, 𝑗)

𝑜 , i.e.,𝑎𝑟𝑔𝑚𝑎𝑥𝑜∈O𝑤
(𝑖, 𝑗)
𝑜 .

𝑤
(𝑖, 𝑗)
𝑜 =

𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])∑
𝑖< 𝑗 𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])

𝑒𝑥𝑝 (𝛼𝑖, 𝑗𝑜)∑
𝑜′∈O 𝑒𝑥𝑝 (𝛼𝑖, 𝑗

𝑜′)
(7)

Next, for each node ℎ 𝑗 , we preserve two operators. One is the
operator from node ℎ 𝑗−1, i.e., its immediate predecessor node. The
other one is the operator with the largest𝑤 (𝑖, 𝑗)

𝑜 among the remain-
ing operators, i.e.,𝑎𝑟𝑔𝑚𝑎𝑥0≤𝑖≤ 𝑗−2𝑤

(𝑖, 𝑗)
𝑜 . For example, in Figure 4(b),

ℎ𝑖−1 always connects to ℎ𝑖 , where 1 ≤ 𝑖 ≤ 3. For ℎ3, assuming
𝑎𝑟𝑔𝑚𝑎𝑥0≤𝑖≤1𝑤

(𝑖, 𝑗)
𝑜 = 0, then ℎ0 is connected to ℎ3 .

Reducing the gap between the micro-DAG and the derived
ST-block. Due to how we reduce a micro-DAG to an ST-Block,
there may be a large gap between the micro-DAG and the derived
ST-Block, which may make the derived ST-block suboptimal. In
other words, although we have learned an effective micro-DAG, the
derived ST-block may not perform as well as the micro-DAG since
the derived ST-Block can be very different from the micro-DAG.

Figure 5(a) shows an example. After training the micro-DAG,
we get weight vector ⟨0.2, 0.3, 0.2⟩. To derive the ST-block, we re-
tain the operator with the largest weight, e.g., the second operator.
However, the other two operators have relatively high weights as
well, meaning that they also contribute significantly to the transfor-
mation from ℎ𝑖 to ℎ 𝑗 . In contrast, in the derived ST-block, only the
second operator contributes to the transformation. This represents
a big gap, which makes the derived ST-block may not be optimal.

(a) Big gap, softmax (b) Small gap, softmax with 𝜏

Figure 5: Gap between Micro-DAG and ST-Block.

To reduce the discrepancy between the derived ST-block and the
extended micro-DAG, we introduce a temperature parameter 𝜏 to
the 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 function when normalizing parameter 𝛼 , where we

replace 𝑒𝑥𝑝 (𝛼 (𝑖,𝑗)
𝑜)∑

𝑜′∈O 𝑒𝑥𝑝 (𝛼
(𝑖,𝑗)
𝑜′)

by 𝑒𝑥𝑝 (𝛼 (𝑖,𝑗)
𝑜 /𝜏)∑

𝑜′∈O 𝑒𝑥𝑝 (𝛼
(𝑖,𝑗)
𝑜′ /𝜏)

. Thus,ℎ 𝑗 is computed

as follows.

ℎ 𝑗 =
∑︁
𝑖< 𝑗

𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])∑
𝑖< 𝑗 𝑒𝑥𝑝 (𝛽 (𝑗) [𝑖])

∑︁
𝑜∈O

𝑒𝑥𝑝 (𝛼𝑖, 𝑗𝑜 /𝜏)∑
𝑜′∈O 𝑒𝑥𝑝 (𝛼𝑖, 𝑗

𝑜′ /𝜏)
𝑜 (ℎ𝑖),

When 𝜏 → 0, the output of 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 is getting closer to a one-hot
vector. In this way, for each node pair (ℎ𝑖 , ℎ 𝑗), the operator with
largest 𝛼𝑖, 𝑗𝑜 is dominant, thus making it very close to the derived
ST-block that only retains the operator with the largest weight.
Figure 5(b) shows an example with a small gap when using the
temperature parameter 𝜏 . In the micro-DAG, the 2nd operator plays
a dominant role for the transformation from ℎ𝑖 to ℎ 𝑗 , and the other
two operators contribute only slightly. Thus, when ignoring the
other two operators in the derived ST-block, the gap is insignifi-
cant. This ensures that the micro-DAG with optimal architecture
parameters 𝛼 and 𝛽 is able to derive a high-performance ST-block.

In practice, if we set the temperature 𝜏 to be very small from the
beginning, the training process can be unstable. Therefore, we set
the initial value of 𝜏 to be relatively large, and perform exponential
annealing on 𝜏 to reduce it gradually as training epochs increase.

3.2.3 Reducing Operator Set O. Rather than using all S/T operators
in the literature, we propose two principles to select a compact set
of S/T operators to construct O with the aim of achieving high
search efficiency without compromising accuracy. First, selecting
S/T operators that capture different perspectives is purposeful. To
this end, we categorize existing S/T operators according to their
characteristics. Second, for each category of S/T operators, we
choose the most effective variant. This helps reduce operator set O
without losing promising operators.

We categorize commonly used S/T operators for correlated time
series forecasting in Table 1. Specifically, we categorize the T-
operators into three families—the Convolutional Neural Network
(CNN) family, the Recurrent Neural Network (RNN) family, and
the Attention family; and we categorize the S-operators into two
families—the Graph Convolution Network (GCN) family and the
Attention family.

For all equations in Table 1, 𝑍 ∈ R𝑁×𝑇×𝐷 denotes the input
tensor and 𝐻 ∈ R𝑁×𝑇 ′×𝐷′

denotes the output tensor after apply-
ing an S/T operator to 𝑍 . Here, 𝑁 represents the number of time
series or nodes in the graph, 𝑇 and 𝑇 ′ represent the number of

975

Table 1: Categorization of S/T Operators for Correlated Time Series Forecasting.

Family Operator Literature Equation

T-
O
pe
ra
to
rs

CNN 1D Convolution [14] 𝐻 (𝑖) = 𝑍 (𝑖) ∗𝑊 (8)
Gated Dilated Causal Convolution [9, 17, 51] 𝐻 (𝑖) = (𝑍 (𝑖) ∗𝑊1) ⊙ 𝜎 (𝑍 (𝑖) ∗𝑊2) (9)(GDCC)

RNN Long Short Term Memory (LSTM) [23, 38] 𝐻
(𝑖)
𝑡 = 𝐿𝑆𝑇𝑀 (𝑍 (𝑖)

𝑡 , 𝐻
(𝑖)
𝑡−1) (10)

Gated Recurrent Unit (GRU) [1, 4, 28] 𝐻
(𝑖)
𝑡 = 𝐺𝑅𝑈 (𝑍 (𝑖)

𝑡 , 𝐻
(𝑖)
𝑡−1) (11)

Attention Transformer [34, 46] 𝐻 (𝑖) = 𝑆𝑜𝑓 𝑡𝑀𝑎𝑥 ((𝑍
(𝑖)𝑊𝑄) (𝑍 (𝑖)𝑊𝐾)⊤

√
𝐷′) (𝑍 (𝑖)𝑊𝑉) (12)

Informer (INF-T) [53] 𝐻 (𝑖) = 𝑆𝑜𝑓 𝑡𝑀𝑎𝑥 (𝑠𝑚𝑝 (𝑍
(𝑖)𝑊𝑄) (𝑍 (𝑖)𝑊𝐾)⊤

√
𝐷′) (𝑍 (𝑖)𝑊𝑉) (13)

S-
O
pe
ra
to
rs

GCN Chebyshev GCN [9, 11, 14, 17, 51] 𝐻𝑡 =
𝐾−1∑
𝑘=0

𝑊𝑘𝑇𝑘 (�̃�)𝑍𝑡 (14)

Diffusion GCN (DGCN) [28, 33, 45] 𝐻𝑡 =
𝐾∑
𝑘=0

(𝐷−1
𝑂
𝐴)𝑘𝑍𝑡𝑊 𝑘

1 + (𝐷−1
𝐼
𝐴⊤)𝑘𝑍𝑡𝑊 𝑘

2 (15)

Attention Transformer [34, 46] 𝐻𝑡 = 𝑆𝑜𝑓 𝑡𝑀𝑎𝑥 (
(𝑍𝑡𝑊𝑄) (𝑍𝑡𝑊𝐾)⊤

√
𝐷′) (𝑍𝑡𝑊𝑉) (16)

Informer (INF-S) None 𝐻𝑡 = 𝑆𝑜𝑓 𝑡𝑀𝑎𝑥 (
𝑠𝑚𝑝 (𝑍𝑡𝑊𝑄) (𝑍𝑡𝑊𝐾)⊤

√
𝐷′) (𝑍𝑡𝑊𝑉) (17)

timestamps, and 𝐷 and 𝐷 ′ represent the number of features. We
use 𝑍 (𝑖) ∈ R𝑇×𝐷 , 𝐻 (𝑖) ∈ R𝑇×𝐷′

to represent the input and output
of the 𝑖-th time series and 𝑍𝑡 ∈ R𝑁×𝐷 , 𝐻𝑡 ∈ R𝑁×𝐷′

to represent
the input and output of the 𝑡-th timestamp. We use 𝐴 to represent
the adjacency matrix;𝑊 denotes convolution kernels;𝑊𝑄 ,𝑊𝐾 ,
and𝑊𝑉 represent projection matrices used in computing attention
scores; 𝐷𝑂 and 𝐷𝐼 represent the diagonal in-degree and out-degree
matrices, respectively; and 𝑇𝑘 (�̃�) is the Chebyshev polynomial of
the adjacency matrix. Finally, ∗ is the convolution operator, 𝜎 rep-
resents the sigmoid function, 𝑠𝑚𝑝 (·) is a sampling function used in
Informer, and ⊙ is the element-wise product.
Applying Principle 1: We analyze the different perspectives
of different families for T-operators and S-operators, respectively.
For T-operators, we consider two perspectives—(i) the ability of
modeling long-term temporal dependencies and (ii) efficiency. Since
short-term temporal dependencies can be relatively easily captured
by all families, we do not consider it as a perspective. Figure 6 shows
the CNN, RNN, and Attention families w.r.t. the two perspectives.

Figure 6: Comparison among Different T-operator Families.

For the CNN family, the core operation is to convolve multiple
kernels, e.g., matrices or vectors, with different parts of 𝑍 to extract

meaningful features. The kernel size is often set to be small, which
leads to a small receptive field that considers only local features
and limits its ability of modeling long-term temporal dependencies.
To model long-term temporal dependencies, it is possible to stack
multiple CNN layers to expand the receptive filed [20, 44, 45]. Since
convolutions at different parts of the input tensors are independent,
CNNs can be easily parallelized and thus being very efficient.

For the RNN family, the core operation is to compute a hidden
state 𝐻𝑡 = 𝑓 (𝑍𝑡 , 𝐻𝑡−1) for each timestamp 𝑡 . Since 𝐻𝑡 is computed
based on 𝐻𝑡−1, i.e., the hidden state from the previous timestamp
𝑡−1, such recursive computations cannot be parallelized. Thus, RNN
is inefficient. Some recent studies have shown that CNN is able to
outperform RNN in capturing long-term dependencies [12, 18, 32].
This explains why RNN is placed lower than CNN in Figure 6.

For the Attention family, the core operation is, for each times-
tamp, to compute an attention score with each other timestamp.
Then, a weighted sum based on the attention scores can be com-
puted. Since the attention scores are computed w.r.t. all timestamps,
this enables the Attention family to be very good at capturing long-
term temporal dependencies. In addition, since the attention score
computations for different timestamps are independent, they can
be easily parallelized and thus being efficient. However, the CNN
family has better efficiency than the Attention family in practice.

To conclude the discussion on the T-operators, we disregard the
RNN family from our search space because CNN and Attention
are more efficient and capture long-term temporal dependencies
better. We keep both the CNN and Attention families because one
is not better than the other one on both perspectives. We provide
empirical evidence to justify this design choice in Section 4.

We proceed to analyze three different perspectives for S-operators—
(i) whether an adjacency matrix is required, (ii) the ability of cap-
turing time-varying spatial correlations, and (iii) efficiency.

The GCN family relies on an adjacency matrix that indicates the
neighboring nodes of each node. The adjacency matrix is often con-
structed based on meta information, e.g., the distances among the

976

sensors which produce the time series or is learned from data [1, 45].
Given an adjacency matrix, for each node, graph convolution con-
volves features of neigboring nodes using a learnable kernel such
that the features from the neighbors are aggregated. The aggrega-
tions per node are independent and thus can be done in parallel.
As a result, GCN is efficient. The spatial correlations between two
time series can be different across time, e.g., the correlations on two
roads’ traffic time series in peak vs. offpeak hours. However, the
adjacency matrix is often constructed based on distance that does
not change across time, this makes GCN fail to capture dynamic
spatial correlations.

The Attention family computes attention scores w.r.t. all other
nodes for each node. Thus, it does not require an adjacency matrix
that indicates the neighboring relationships. Next, the attention
scores can be computed based on hidden representations at different
timestamps, and thus it is able to capture time-varying dependen-
cies. In terms of efficiency, attention scores at different nodes are
independent and thus are parallelizable and efficient.

Table 2 summarizes the GCN vs. Attention families w.r.t. the per-
spectives of interest. We observe that the two families complement
each other and thus we keep both families in our search space.

Table 2: Comparison among Different S-operator Families.

Perspectives GCN Attention
Needs predefined adjacency matrix Yes No

Captures time-varying spatial correlations No Yes
Efficiency Fastest Fast

Applying Principle 2: After determining the relevant S/T operator
families, we apply the second principle to choose the most effective
variant for each family. To do so, we consider two scenarios. If
there exist studies that compare the different variants in the same
experimental setting, we then directly choose the most effective
variant. If such studies do not exist, we conduct experiments to
identify the most effective variant.

For the CNN family, we consider 1D Convolution and Gated
Dilated Causal Convolution (GDCC). The computations of both
operators are shown in Equations 8 and 9 in Table 1, which clearly
indicates that GDCC is an enhanced version of 1D convolution. In
addition, a recent paper [8] has shown strong empirical evidence
that GDCC is more effective than 1D convolution. Thus, for the
CNN family, we include only GDCC into operator set O.

For the temporal Attention family, we have two candidates—
Transformer [41] and its more efficient variant, Informer [53]. In-
former improves the attention mechanism in Transformer by only
sampling a subset of timestamps to calculate the attention score
with all the other timestamps, denoted by 𝑠𝑚𝑝 (·) in Equation 13. In
addition, Informer has been shown to be able to also achieve more
accurate forecasting than Transformer on time series forecasting
tasks [53]. Thus, we include only Informer, denoted by INF-T as it
concerns temporal dependencies, into O.

For the GCN family, we consider Chebyshev GCN [22] and Diffu-
sion GCN [28]. Although the two variants are commonly used in the
literature, there is no existing studies compare the two variants in a
consistent experimental setting for CTS forecasting. We thus design
an experiment to compare them. This experiment is conducted on

two datasets, namely METR-LA and PEMS03 (see the deatils of
the two datasets in Section 4.1). The results in Table 3 show that
the diffusion GCN consistently outperforms the Chebyshev GCN.
Therefore, we include only diffusion GCN into O.

Table 3: Comparison of GCN and Attention Variants, MAE.

DGCN Cheby GCN Informer Transformer
METR-LA 3.33 3.42 3.64 3.65
PEMS03 18.44 21.55 23.79 23.54

For the spatial Attention family, only Transformer is used in the
literature. However, since Informer achieves better accuracy on
modeling temporal dependencies, it motivates us to consider it on
modeling spatial correlations. We thus conduct an experiment to
compare them. Table 3 shows that they have similar accuracy. Since
Informer is more efficient than Transformer, we include Informer,
denoted by INF-S as it concerns spatial correlations, into O.

To summarize, we include GDCC, INF-T, DGCN, and INF-S as the
S/T operators in our micro space. In addition, we also include two
non-parametric operators, zero and identity. This yields a compact
operator set O with 6 operators.

3.3 Macro Search Space
We design a macro search space to search for topologies among
different ST-blocks. This enablesAutoCTS to generate ST-backbones
with heterogeneous ST-blocks connected by flexible topologies.

Specifically, we represent the macro search space as a macro-
DAG with 𝐵 nodes, where each node 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝐵, represents an
ST-block, and an edge (𝑏𝑖 , 𝑏 𝑗) stands for information flow from
node 𝑏𝑖 to node 𝑏 𝑗 (see Figure 7(a)). Note that the predecessor of
node 𝑏1 is the embedding layer. An information flow from 𝑏𝑖 to 𝑏 𝑗
means that the output representation of ST-block 𝑏𝑖 is fed into as
the input representation of ST-block 𝑏 𝑗 . This is different from the
micro-DAG, where an edge indicates some operators that transform
the representations.

In addition to the information flows which are to be learned, we
also have hard code connections from all ST-blocks to the output
layer. In other words, no matter which topology is learned to con-
nect the ST-blocks, the outputs of all ST-blocks are merged and fed
to the output layer.

The final, learned ST-backbone is a subgraph of the macro-DAG,
where only one incoming edge is retained for each node, i.e., each
ST-block (see Figure 7(b)).

To enable the learning, we introduce the third architecture pa-
rameter 𝛾 to parameterize the information flows among ST-blocks.
Let 𝑒 (𝑗)

𝑖𝑛
and 𝑒 (𝑗)𝑜𝑢𝑡 be the input and output representations of ST-block

𝑏 𝑗 , respectively. We use a scalar-valued parameter 𝛾 (𝑖, 𝑗) to repre-
sent the weight of edge (𝑏𝑖 , 𝑏 𝑗), and calculate 𝑒 (𝑗)

𝑖𝑛
as the weighted

sum of all its predecessors’ outputs.

𝑒
(𝑗)
𝑖𝑛

=
∑︁
𝑖< 𝑗

𝑒𝑥𝑝 (𝛾 (𝑖, 𝑗))∑
𝑖< 𝑗 𝑒𝑥𝑝 (𝛾 (𝑖, 𝑗))

𝑒
(𝑖)
𝑜𝑢𝑡 (18)

At the end of the learning, each ST-block 𝑏 𝑗 is connected to the
precedent 𝑏𝑖 with the largest 𝛾 (𝑖, 𝑗) .

977

(a) Marco-DAG (b) Derived ST-backbone

Figure 7: Marco Search Space.

To enable heterogeneous ST-blocks, we allow the ST-blocks to
have different micro architectures. This is achieved by using distinct
micro architecture parameters for each ST-block. Specifically, we
use architecture parameters 𝛼𝑖 and 𝛽𝑖 to parameterizing the micro
search space of ST-block 𝑏𝑖 . The joint search space, which is com-
posed of both the micro and macro search spaces, is parameterized
by Θ = ({𝛼𝑖 , 𝛽𝑖 }, 𝛾).

3.4 Search Strategy
The goal of architecture search is to learn the architecture parameter
Θ = ({𝛼𝑖 , 𝛽𝑖 }, 𝛾) by training the macro-DAG, governed by 𝛾 , and
multiple heterogeneous micro-DAGs governed by {𝛼𝑖 , 𝛽𝑖 }, in an
end-to-end manner. We design a search strategy to achieve this.

The learning of AutoCTS follows a two-stage strategy—(i) ar-
chitecture search and (ii) architecture evaluation. In the architecture
search stage, we run AutoCTS on the training set to search for an
optimal ST-backbone. To do this, we first divide the training data
evenly into a pseudo-training data D𝑡𝑟𝑎𝑖𝑛 and a pseudo-validation
dataD𝑣𝑎𝑙 , which are used to train both the architecture parameters
Θ and the network weights 𝑤 , e.g., kernels in CNNs and GCNs,
projection matrices in Attentions. Specifically, we adopt a bi-level
optimization algorithm to optimize Θ and𝑤 .

𝑚𝑖𝑛
Θ

L𝑣𝑎𝑙 (𝑤∗,Θ) (19)

𝑠 .𝑡 . 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 L𝑡𝑟𝑎𝑖𝑛 (𝑤,Θ), (20)

where L𝑡𝑟𝑎𝑖𝑛 and L𝑣𝑎𝑙 denote the losses (e.g., mean absolute er-
ror or mean squared error) on the pseudo-training and pseudo-
validation data, respectively. We employ first-order approximation
to speed-up the architecture search [30]. The detailed training pro-
cess is shown in Algorithm 1, where 𝜂 and 𝜉 are the learning rates
for the two optimizers for Θ and𝑤 , respectively.

Algorithm 1 Joint Search Algorithm
Input: Correlated time series X ∈ 𝑅𝑁×𝑇×𝐹 , Adjacency matrix 𝐺 ;
1: Randomly initialize Θ = ({𝛼𝑖 , 𝛽𝑖 }, 𝛾) and𝑤 . Split training data

into pseudo train data D𝑡𝑟𝑎𝑖𝑛 and pseudo validation data D𝑣𝑎𝑙 .
2: While Not exceeding the largest epoch do
3: Sample a mini-batch from D𝑣𝑎𝑙 .

4: Update Θ with Θ = Θ − 𝜂 ▽Θ L𝑣𝑎𝑙 (𝑤,Θ)
5: Sample a mini-batch from D𝑡𝑟𝑎𝑖𝑛 .

6: Update𝑤 with𝑤 = 𝑤 − 𝜉 ▽𝑤 L𝑡𝑟𝑎𝑖𝑛 (𝑤,Θ) .
7: return ST-backbone w.r.t. the learned Θ.

In the architecture evaluation stage, we only keep the architecture
parameters Θ but discard the learned network weights𝑤 from the
architecture search stage. This means that we only keep the learned
neural architecture of the learned ST-backbone. Instead, we train
the forecasting model with the learned ST-backbone from scratch
on the original training and validation sets to obtain new network
weights𝑤 ′. Finally, we report the accuracy of the forecasting model
with𝑤 ′ on the testing set.

4 EXPERIMENTS
We evaluate AutoCTS on both single- and multi-step time series
forecasting tasks using eight correlated time series datasets from
different domains to justify our design choices.

4.1 Experimental Settings
4.1.1 Datasets. To enable fair comparisons with existing studies
and to facilitate reproducibility, we employ eight commonly used
benchmark datasets for correlated time series forecasting, including
six datasets for multi-step forecasting [1, 14, 28, 40, 45, 51] and two
datasets for single-step forecasting [23, 38].
Multi-step forecasting:
• METR-LA and PEMS-BAY: Both datasets are traffic speed time

series datasets, released by Li et al. [28]. The two datasets are
collected from highways in the Los Angeles County and the Bay
area, respectively.

• PEMS03, PEMS04, PEMS07 and PEMS08: All datasets are traffic
flow time series collected from the Caltrans Performance Mea-
surement System (PeMS), which are released by Song et al. [40].

Table 4 summarizes the statistics of the six datasets. This includes
𝑁 , the number of time seriesor nodes, and 𝑇 , the total number of
timestamps. We adopt the same train-validation-test splits as in the
original papers [28, 40], as shown in the “Split Ratio” column in
Table 4. All the time series in the six dataset have a record every 5
minutes, and thus there are 12 records per hour. Following existing
literature [28, 44, 45], we consider a multi-step forecasting setting
where we use the recent one hour in the history (i.e., input=12
timestamps) to forecast the records in the next hour (i.e., output=12
timestamps). For each dataset, a graph is constructed where each
node represents a sensor that generates a time series. The adjacency
matrix represents the road network distances among the sensors
[28, 40, 45, 51].

Table 4: Datasets.

Dataset 𝑁 𝑇 Split Ratio Input Output
METR-LA 207 34,272 7:1:2 12 12
PEMS-BAY 325 52,116 7:1:2 12 12
PEMS03 358 26,208 6:2:2 12 12
PEMS04 307 16,992 6:2:2 12 12
PEMS07 883 28,224 6:2:2 12 12
PEMS08 170 17,856 6:2:2 12 12
Solar-energy 137 52,560 6:2:2 168 1
Electricity 321 26,304 6:2:2 168 1

To enable direct and fair comparisons with existing studies [1,
28, 40, 44, 45], for METR-LA and PEMS-BAY, we report accuracy of

978

the forecasts on the 3rd, 6th, and 12th timestamps, corresponding
to the next 15-min, 30-min, and 60-min, respectively; for PEMS03,
PEMS04, PEMS07, and PEMS08, we report the average accuracy
over all 12 future timestamps.
Single-step forecasting:
• Solar-Energy: The solar power production records collected from

137 PV plants in the Alabama State, released by Lai et al. [23]
• Electricity: The electricity consumption records collected from

321 clients, released by Lai et al. [23].
The statistics of the two datasets are also summarized in Table 4.
We also use the same train-validation-test splits as the original
paper [23]. Similar to the multi-step forecasting, we consider a well-
known single-step forecasting setup to enable fair comparions with
existing studies. Specifically, we use the historical 168 timestamps
(i.e., input=168 timestamps) to predict the value in a single future
timestamp (i.e., output=1 timestamp). The single future timestamp
is either 3 or 24. There is no predefined adjacency matrix for Solar-
Energy and Electricity datasets.

4.1.2 Evaluation Metrics. Following the evaluation methods in pre-
vious studies [23, 28, 44, 45], we use mean absolute error (MAE),
root mean squared error (RMSE), mean absolute percentage error
(MAPE) to evaluate the accuracy of multi-step forecasting, and use
Root Relative Squared Error (RRSE) and Empirical Correlation Co-
efficient (CORR) to measure the accuracy of single-step forecasting.
For MAE, RMSE, MAPE, and RRSE, lower values indicate higher
accuracy, while larger CORR values indicate higher accuracy.

4.1.3 Baselines. We compare AutoCTS with eight methods, includ-
ing seven methods that are manually designed by human experts
and one automated approach. The implementations of the baselines
are based on the public-available code released by their authors.
• DCRNN: Diffusion convolutional recurrent neural network uses

diffusion GCN with GRU to build ST-blocks, and employs an
encoder-decoder architecture for multi-step forecasting [28].

• STGCN: Spatio-temporal graph convolutional network adopts
a Chebyshev GCN and a gated 1D convolution to build ST-
blocks [51].

• Graph WaveNet: It employs diffusion GCN and GDCC to build
ST-blocks [45].

• AGCRN: Adaptive graph convolutional recurrent network com-
bines enhanced Chebyshev GCN and GRU to build ST-blocks [1].

• LSTNet: A long- and short-term time-series network, which
combines 1D convolution and GRU to extract short-term and
long-term temporal dependencies [23].

• TPA-LSTM: An attention based recurrent neural network [38].
• MTGNN:Amultivariate time series forecastingmodel with graph

neural networks, which utilizes a spatial-based GCN and GDCC
to construct ST-blocks [44].

• AutoSTG: A NAS based method for automated spatio-temporal
graph prediction, which uses only diffusion GCN and 1D convo-
lution as the S/T operators in the search space for only ST-blocks
but not ST-backbones, and employs meta learning to learn the
weights for the diffusion GCN and 1D convolution [33].

4.1.4 Implementation Details. All the model training experiments
are conducted on Nvidia Quadro RTX 8000 GPUs. The source code
is available at https://github.com/WXL520/AutoCTS.

Architecture Search. Following Liu et al. [30], we use the ReLU-
operator-BN order for all parametric operators to improve the train-
ing stability. We vary the number of nodes in the micro-DAG 𝑀

among 3, 5, and 7, and vary the number of nodes in the macro-DAG
𝐵 among 2, 4, 6, with default values shown in bold, for all datasets.
We adopt Adam [21] as the optimizer for both the architecture
parameters Θ and the network weights𝑤 . For Θ, we set the initial
learning rate to 3 × 10−4, the momentum to (0.5, 0.999), and the
weight decay to 10−3. For𝑤 , we set the initial learning rate to 10−3,
and the weight decay to 10−4. We adopt partial channels [47] to
improve the memory efficiency, where we select 1/4 features dur-
ing training. For all datasets, we set the initial temperature 𝜏 to 5.0
and use exponential annealing with a multiplicative factor of 0.9 to
gradually reduce it as training evolves until it reaches 0.001.

4.2 Experimental Results
4.2.1 Multi-step Forecasting Accuracy. Tables 5 and 6 present the
overall accuracy of AutoCTS and the baselines on multi-step fore-
casting datasets. We use bold to highlight the best accuracy and
underline the second best accuracy. Since AutoSTG relies on ad-
ditional information on the road network to enable meta learning
based weight generation, and such information is unavailable on
the four PEMS datasets, AutoSTG is thus unable to work on the
four PEMS datasets.

Key observations are as follows. First, AutoCTS outperforms
all manually designed models on all multi-step forecasting tasks,
demonstrating that AutoCTS is able to produce very competitive ST-
blocks and ST-backbones that outperform human designed models.

Second, when comparing to the other automated approach Au-
toSTG, although AutoSTG includes additional features, such as GPS
coordinates of sensors, to enhance its forecasting accuracy, it is still
inferior to AutoCTS except for the MAE at the 60-min timestamp
on METR-LA. This is due to (i) AutoSTG only include diffusion
GCN and 1D convolution to construct the search space, while we
follow the proposed two principles to select a compact yet comple-
mentary S/T operators. (ii) AutoSTG only searches for the micro
architecture of a single ST-block, and then stacks the ST-blocks to
build the forecasting model. In contrast, we jointly search for both
the micro architecture of ST-blocks and the macro architecture of
the ST-backbone.

Third, AutoCTS outperforms AGCRN and DCRNN, which both
employ GRU to model temporal dependencies. This justifies our
design choices that disregard the RNN family in the micro search
space.

Fourth, there does not exist a single manually-designed model
that consistently outperforms other manually-designed models. For
example, MTGNNoutperforms GraphWaveNet onMETR-LA, but is
outperformed byGraphWaveNet on PEMS04. This suggests that the
optimal neural architectures for different datasets may be different,
which implies that it is beneficial to be able to automatically identify
forecasting models with unique architectures for different datasets,
which is what AutoCTS is able to offer.

4.2.2 Single-step Forecasting Accuracy. Table 8 shows the exper-
imental results on the two single-step forecasting datasets. We
observe that: (1) AutoCTS and MTGNN outperform LSTNet and

979

https://github.com/WXL520/AutoCTS

Table 5: Accuracy of Multi-step Forecasting, METR-LA and PEMS-BAY.

Data Models 15 min 30 min 60 min ParametersMAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
M
ET

R-
LA

DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50% 372,353
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70% 119,176

Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01% 309,400
AGCRN 2.83 5.45 7.56% 3.20 6.55 8.79% 3.58 7.41 10.13% 751,650
MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87% 405,452
AutoSTG 2.70 5.16 6.91% 3.06 6.17 8.30% 3.47 7.27 9.87% 509,048
AutoCTS 2.67 5.11 6.80% 3.05 6.11 8.15% 3.47 7.14 9.81% 358,520

PE
M
S-
BA

Y

DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90% 372,353
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79% 119,648

Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63% 311,760
AGCRN 1.35 2.83 2.87% 1.69 3.81 3.84% 1.96 4.52 4.67% 752,830
MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53% 573,484
AutoSTG 1.31 2.76 2.73% 1.63 3.67 3.63% 1.92 4.38 4.43% 553,932
AutoCTS 1.30 2.71 2.69% 1.61 3.62 3.55% 1.89 4.32 4.36% 395,984

Table 6: Accuracy of Multi-step Forecasting, PEMS03, PEMS04, PEMS07, and PEMS08.

Data Metric DCRNN STGCN Graph WaveNet AGCRN MTGNN AutoCTS

PEMS03
MAE 18.18 17.49 14.82 15.89 15.10 14.71
RMSE 30.31 30.12 25.24 28.12 25.93 24.54
MAPE 18.91% 17.15% 16.16% 15.38% 15.67% 14.39%

PEMS04
MAE 24.70 22.70 19.16 19.83 19.32 19.13
RMSE 38.12 35.55 30.46 32.26 31.57 30.44
MAPE 17.12% 14.59% 13.26% 12.97% 13.52% 12.89%

PEMS07
MAE 25.30 25.38 21.54 21.31 22.07 20.93
RMSE 38.58 38.78 34.23 35.06 35.80 33.69
MAPE 11.66% 11.08% 9.22% 9.13% 9.21% 8.90%

PEMS08
MAE 17.86 18.02 15.13 15.95 15.71 14.82
RMSE 27.83 27.83 24.07 25.22 24.62 23.64
MAPE 11.45% 11.40% 10.10% 10.09% 10.03% 9.51%

Table 7: Search time (GPU hours)
and memory (MB).

DataSet Search MemoryTime

METR-LA 21.43 20,109
PEMS-BAY 52.60 32,117
PEMS03 25.95 34,401
PEMS04 14.64 30,681
PEMS07 61.74 33,057
PEMS08 12.34 16,521

Solar-Energy 163.21 30,977
Electricity 145.68 36,339

TPA-LSTM. This is because LSTNet and TPA-LSTM do not explic-
itly model the correlations among different time series. In contrast,
both AutoCTS and MTGNN simultaneously model the temporal and
spatial dependencies. AutoCTS does not outperform MTGNN much
for single-step forecasting when compared to multi-step forecast-
ing. This suggests that MTGNN is already a very effective model
that behaves similarly to the optimal model identified from the
search space of AutoCTS for single-step forecasting, but is less ef-
fective for multi-step forecasting. This further justifies the needs
for automated solutions for identifying specific, optimal models for
different forecasting tasks. (2) AutoCTS achieves the best accuracy
on both short-term (see Table 5 and Table 6) and long-term (see
Table 8) datasets. This is because our search space contains GDCC
and INF-T, which are good at modeling both short- and long-term
dependencies, respectively, which enables AutoCTS to generate
high-performance models in both cases.

4.2.3 Ablation Studies. We conduct ablation studies to justify the
design choices used in AutoCTS. We only report results on PEMS03
and put the results on other datasets in a technical report [43]. In
particular, we compare AutoCTS with the following variants: (1)

Table 8: Accuracy of Single-step Forecasting.

Data Solar-Energy Electricity
Models Metric 3 24 3 24

LSTNet RRSE 0.1843 0.4643 0.0864 0.1007
CORR 0.9843 0.8870 0.9283 0.9119

TPA-LSTM RRSE 0.1803 0.4389 0.0823 0.1006
CORR 0.9850 0.9081 0.9439 0.9133

MTGNN RRSE 0.1778 0.4270 0.0745 0.0953
CORR 0.9852 0.9031 0.9474 0.9234

AutoCTS
RRSE 0.1750 0.4143 0.0743 0.0947
CORR 0.9855 0.9085 0.9477 0.9239

w/o design principles: this variant does not follow the proposed two
principles for selecting a compact set of S/T operators. Rather, it
includes all operators in Table 1. (2) w/o temperature: it does not use
the temperature parameter 𝜏 to reduce the gap between the micro-
DAG and the derived ST-block. (3) w/o macro search: this variant
only searches for a single optimal ST-block and then sequentially
stacks ST-blocks with residual connections to build an ST-backbone.

980

(4) macro only: it employs four existing human designed ST-blocks
as the atomic search units and only searches for ST-backbones. The
selected ST-blocks come from STGCN [51], DCRNN [28], Graph
WaveNet [45], and MTGNN [44]. We consider (1) the accuracy of
the models identified by the different variants, and (2) the runtime
in GPU hours that it takes to identify the models.

Table 9 shows that: (1) AutoCTS achieves better accuracy than
its variant w/o design principles, and costs much less GPU hours
for architecture search. This demonstrates the effectiveness of the
proposed principles for selecting a compact and complementary S/T
operators from Table 1. (2) The proposed temperature parameter
helps reduce the gap and find more accurate models with similar
GPU hours. (3) Disabling the macro search and search for the stack-
ing of homogeneous ST-backbone lowers the performance without
significantly decreasing the searching time. This suggests our joint
search space and strategy is effective and efficient. (4) AutoCTS
significantly outperforms the macro only variant, which justify-
ing that S/T operators are more suitable to be used as the atomic
search units in the search space than manually-designed ST-blocks.
Although the macro only variant is very efficient, due to its small
search space, it is unappealing as many human designed models,
such as Graph WaveNet, AGCRN, and MTGNN, outperform it.

Table 9: Ablation Studies, PEMS03

Models MAE RMSE MAPE GPU hours

AutoCTS 14.71 24.54 14.39% 25.95
w/o design principles 15.66 25.51 15.28% 126.25
w/o temperature 14.87 24.93 14.64% 25.97
w/o macro search 15.07 25.22 14.84% 25.89

macro only 15.83 26.12 15.77% 15.90

4.2.4 Parameter Sensitivity Analysis. We proceed to evaluate the
impact of key hyperparameters in AutoCTS, including𝑀 , i.e., the
number of nodes in an ST-block in the micro search space, and
𝐵, i.e., the number of ST-blocks 𝐵 in the macro search space, and
𝐸𝑑𝑔𝑒 , i.e., the number of incoming edges per node in the derived
ST-block. We use 𝐵 = 4,𝑀 = 5, and 𝐸𝑑𝑔𝑒 = 2 as default values. We
then vary𝑀 among {3, 5, 7}, vary 𝑆 among {2, 4, 6}, and vary 𝐸𝑑𝑔𝑒

among {2, 3}, while keeping the rest to their default values. Due to
the space limitation, we report only the results on PEMS03, and put
the results on other datasets in a technical report [43].

Table 10: Impact of𝑀 and 𝐵, PEMS03.

𝑀 MAE RMSE MAPE 𝐵 MAE RMSE MAPE
3 14.95 25.36 15.18% 2 14.92 25.11 15.03%
5 14.71 24.54 14.39% 4 14.71 24.54 14.39%
7 14.82 25.23 14.51% 6 14.80 24.73 14.45%

Table 10 shows that AutoCTS achieves the best accuracy under
𝑀 = 5 and 𝐵 = 4. Decreasing 𝑀 or 𝐵 reduces the expressiveness
of AutoCTS and thus the accuracy of the automatically identified
models. A larger 𝑀 or 𝐵 increases the complexity of the micro
and macro search space, resulting in potentially more overfitting

problems when the training data is not abundant. Thus, it slightly
degrades the accuracy. In addition, larger𝑀 or 𝐵may lead to models
that use significantly more parameters than the baseline models.

Table 11 shows minimal accuracy improvements when 𝐸𝑑𝑔𝑒

increases from 2 to 3, while the training time shows a clear increase.
This suggests that using 2 edges per node yields sufficiently complex
internal topologies for ST-blocks and avoids introducing too many
parameters and thus maintaining good efficiency.

Table 11: Impact of 𝐸𝑑𝑔𝑒, PEMS03.

𝐸𝑑𝑔𝑒 MAE RMSE MAPE Training (s/epoch)
2 14.71 24.54 14.39% 149.3
3 14.58 24.20 15.40% 204.0

4.2.5 Case Study. We show the architecture of the forecasting
model on PEMS03 in Figure 8. As Figures 8(a), 8(b), 8(c) and 8(d)
show, each ST-block has a distinct internal architecture. In particu-
lar, the four ST-blocks contain all S/T operators in the micro search
space, including 5 GDCC, 2 INF-T, 5 INF-S and 10 DGCN. This
indicates the effectiveness of the proposed micro search space. The
ST-backbone consists of the four heterogeneous ST-blocks, which
are assembled by diverse topologies. This justifies the needs of
enabling topologically flexible, heterogeneous ST-backbone, which
most existing models fail to support.

4.2.6 Transferability. Since manually designed forecasting models
are often applied to different datasets, it is pertinent to investigate
the transferability of forecasting models learned by AutoCTS to as-
sess how such models compare with traditional, manually designed
models. To this end, we consider a “Transferred Model” that is iden-
tified automatically by AutoCTS on the PEMS03 dataset, as shown
in Figure 8. We apply this model to make forecasts on datasets
METR-LA and PEMS-BAY. The results are shown in Table 12, where
AutoCTS denotes the automatically identified model on METR-LA
or PEMS-BAY. The transferred model achieves competitive accu-
racy on METR-LA and PEMS-BAY. Although the transferred model
is not as good as the model that is directly learned by AutoCTS on
the specific dataset, it is able to outperform the baselines on most
metrics, especially in the case of PEMS-BAY (cf. Table 5). This is
evidence that AutoCTS is able to produce effective and transferable
forecasting models.

4.2.7 Search Time & Memory Costs. For the architecture search
phase, we consider the runtime and memory that AutoCTS takes.
Table 7 shows that the search time varies from 12.34 to 163.21
GPU hours across datasets, depending on the number of time se-
ries/nodes, the total number of timestamps, and the length of the
input time window. The searching process takes up to ca. 36 GB
memory, which can fit into the memory of a single modern GPU.

The last column in Table 5 shows the number of parameters of
AutoCTS and baseline models. AutoCTS often uses fewer parame-
ters than doMTGNN, AGCRN, and AutoSTG, uses more parameters
than does STGCN (whose accuracy is among the worst), and is com-
parable to the other methods. To understand how models identified
by AutoCTS and baseline models compare in terms of time and
space, we report the training time (seconds per epoch), inference

981

(a) ST-block 1 (b) ST-block 2 (c) ST-block 3 (d) ST-block 4 (e) Forecasting Model

Figure 8: The Automatically Searched Forecasting Model on the PEMS03 Dataset.

Table 12: Transferability: Transferred Model is Searched on PEMS03, AutoCTS is Searched on METR-LA or PEMS-BAY.

Data Models 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA Transferred Model 2.72 5.11 6.90% 3.08 6.09 8.28% 3.50 7.12 10.02%
AutoCTS 2.67 5.11 6.80% 3.05 6.11 8.15% 3.47 7.14 9.81%

PEMS-BAY Transferred Model 1.30 2.73 2.73% 1.62 3.63 3.63% 1.90 4.35 4.51%
AutoCTS 1.30 2.71 2.69% 1.61 3.62 3.55% 1.89 4.32 4.36%

time (milliseconds per window), and total number of parameters
on all datasets in a technical report [43].

5 RELATEDWORK
We categorize existing studies onCTS forecasting into two categories—
manually designed models vs. automated designed models.
ManuallyDesignedModels. Recent deep learningmodels achieve
the state-of-the-art accuracy in correlated time series forecasting.
Such models rely on different types of human designed ST-blocks
that capture both temporal dependencies and spatial correlations.
Table 13 summarizes the ST-blocks in the literature according to
two dimensions—temporal dependencies modeling (including the
CNN, RNN and attention families) vs. spatial correlation modeling
(including the GCN and attention families).

Table 13: Categorization of Human Designed ST-blocks.

CNN RNN Attention
GCN [9, 11, 14, 17, 44, 45, 51] [1, 4, 16, 28] [14]
Attention [14] None [46, 52]

Automatically Designed Models. Neural Architecture Search
(NAS) has been employed to automatically design neural architec-
tures for the many tasks. Existing NAS methods can be divided
into evolutionary algorithm based [39], reinforcement learning
based [37], performance predictor based [26] and gradient-based
methods [30]. AutoCTS is a gradient-based method due to its high
efficiency. Despite of great success in computer vision [3, 37], natu-
ral language processing [39], and AutoML systems [27, 54], little
effort has been devoted to time series forecasting. AutoST [25] is
proposed for spatio-temporal prediction, where the time series are
from a uniform grid. The values at each timestamp are considered
as an image, and then a search space that only contains convolution

operators is proposed. AutoST does not apply in our setting, where
time series are not necessarily from a uniform grid, making the
image modeling inapplicable. AutoSTG [33] considers correlated
time series forecasting. However, it differs from AutoCTS in the
following perspective. (1) AutoSTG only considers one T-operator
and one S-operator, i.e., 1D convolution and Diffusion GCN. In
contrast, we propose two principles to select the most effective and
efficient operators from diverse families. (2) AutoSTG only designs
ST-blocks, whereas we search both ST-blocks and the ST-backbone.
(3) AutoSTG relies on additional information of the graph to enable
meta-learning to learn network weight 𝑤 . In contrast, AutoCTS
does not rely on such additional information but purely on the time
series themselves. Thus, AutoCTS has a wider application scope.

6 CONCLUSION
We present AutoCTS, a framework that is able to automatically
learn a neural network model for correlated time series forecasting.
In particular, we design a micro search space with a compact set
of S/T operators to find novel ST-blocks. In addition, we design a
macro search space to identify the topology among heterogeneous
ST-blocks to construct novel ST-backbones. Extensive experiments
on eight commonly used correlated time series forecasting datasets
justify the design choices ofAutoCTS. As future work, it is of interest
to include model efficiency as an additional criterion into the search
strategy to automatically identify both accurate and efficientmodels.
It is also of interest to extend AutoCTS to other analytics tasks, such
as outlier detection [19] and trajectory analytics [49].

ACKNOWLEDGMENTS
This work was partially supported by Independent Research Fund
Denmark under agreements 8022-00246B and 8048-00038B, the
VILLUM FONDEN under agreements 34328 and 40567, and the
Innovation Fund Denmark centre, DIREC.

982

REFERENCES
[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph

Convolutional Recurrent Network for Traffic Forecasting. In NeurIPS, Vol. 33.
17804–17815.

[2] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang,
and Christian S. Jensen. 2022. Unsupervised Time Series Outlier Detection with
Diversity-Driven Convolutional Ensembles. Proc. VLDB Endow. 15, 3 (2022),
611–623.

[3] Liang-Chieh Chen, Maxwell D Collins, Yukun Zhu, George Papandreou, Barret
Zoph, Florian Schroff, Hartwig Adam, and Jonathon Shlens. 2018. Searching
for efficient multi-scale architectures for dense image prediction. In NeurIPS.
8713–8724.

[4] Weiqi Chen, Ling Chen, Yu Xie, Wei Cao, Yusong Gao, and Xiaojie Feng. 2020.
Multi-range attentive bicomponent graph convolutional network for traffic fore-
casting. In AAAI, Vol. 34. 3529–3536.

[5] Razvan-Gabriel Cirstea, Darius-Valer Micu, Gabriel-Marcel Muresan, Chenjuan
Guo, and Bin Yang. 2018. Correlated Time Series Forecasting using Multi-Task
Deep Neural Networks. In CIKM. 1527–1530.

[6] Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin
Pan. 2021. EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time
Series Forecasting. In ICDE. 1739–1750.

[7] Razvan-Gabriel Cirstea, Bin Yang, and Chenjuan Guo. 2019. Graph Atten-
tion Recurrent Neural Networks for Correlated Time Series Forecasting. In
MileTS19@KDD.

[8] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language
modeling with gated convolutional networks. In ICML. 933–941.

[9] Zulong Diao, Xin Wang, Dafang Zhang, Yingru Liu, Kun Xie, and Shaoyao He.
2019. Dynamic spatial-temporal graph convolutional neural networks for traffic
forecasting. In AAAI, Vol. 33. 890–897.

[10] Thomas Elsken, JanHendrikMetzen, and FrankHutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20 (2019), 1–21.

[11] Shen Fang, Qi Zhang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. 2019.
GSTNet: Global Spatial-Temporal Network for Traffic Flow Prediction. In IJCAI.
2286–2293.

[12] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In ICML. 1243–1252.

[13] Chenjuan Guo, Bin Yang, Jilin Hu, Christian S. Jensen, and Lu Chen. 2020.
Context-aware, preference-based vehicle routing. VLDB J. 29, 5 (2020), 1149–
1170.

[14] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention based spatial-temporal graph convolutional networks for traffic flow
forecasting. In AAAI, Vol. 33. 922–929.

[15] Jilin Hu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2018. Risk-aware
path selection with time-varying, uncertain travel costs: a time series approach.
VLDB J. 27, 2 (2018), 179–200.

[16] Jilin Hu, Bin Yang, Chenjuan Guo, Christian S. Jensen, and Hui Xiong. 2020.
Stochastic Origin-Destination Matrix Forecasting Using Dual-Stage Graph Con-
volutional, Recurrent Neural Networks. In ICDE. 1417–1428.

[17] Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong.
2020. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional
Networks. In IJCAI. 2355–2361.

[18] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. 2016. Neural machine translation in linear time.
arXiv preprint arXiv:1610.10099 (2016).

[19] Tung Kieu, Bin Yang, Chenjuan Guo, Razvan-Gabriel Cirstea, Yan Zhao, Yale
Song, and Christian S. Jensen. 2022. Anomaly Detection in Time Series with
Robust Variational Quasi-Recurrent Autoencoders.. In ICDE.

[20] TungKieu, Bin Yang, ChenjuanGuo, and Christian S. Jensen. 2018. Distinguishing
Trajectories from Different Drivers using Incompletely Labeled Trajectories. In
CIKM. 863–872.

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[23] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In SIGIR.
95–104.

[24] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-Temporal Fusion Graph Neural
Networks for Traffic Flow Forecasting. In AAAI, Vol. 35. 4189–4196.

[25] Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li, and Yu Zheng. 2020.
Autost: Efficient neural architecture search for spatio-temporal prediction. In
SIGKDD. 794–802.

[26] Wei Li, Shaogang Gong, and Xiatian Zhu. 2020. Neural graph embedding for
neural architecture search. In AAAI, Vol. 34. 4707–4714.

[27] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin Ding, Yaliang Li, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, et al. 2021. VolcanoML: speeding up
end-to-end AutoML via scalable search space decomposition. Proc. VLDB Endow.

14 (2021), 2167–2176.
[28] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional

Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.
[29] Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. 2018. Finding Top-k

Optimal Sequenced Routes. In ICDE. 569–580.
[30] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable

Architecture Search. In ICLR.
[31] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and

Jianchao Yang. 2019. AtomNAS: Fine-Grained End-to-End Neural Architecture
Search. In ICLR.

[32] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. 2016. Conditional image generation with
PixelCNN decoders. In NeurIPS. 4797–4805.

[33] Zheyi Pan, Songyu Ke, Xiaodu Yang, Yuxuan Liang, Yong Yu, Junbo Zhang,
and Yu Zheng. 2021. AutoSTG: Neural Architecture Search for Predictions of
Spatio-Temporal Graphs. InWWW. 1846–1855.

[34] Cheonbok Park, Chunggi Lee, Hyojin Bahng, Yunwon Tae, Seungmin Jin, Kihwan
Kim, Sungahn Ko, and Jaegul Choo. 2020. ST-GRAT: A novel spatio-temporal
graph attention networks for accurately forecasting dynamically changing road
speed. In CIKM. 1215–1224.

[35] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Anytime
Stochastic Routing with Hybrid Learning. Proc. VLDB Endow. 13, 9 (2020), 1555–
1567.

[36] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Fast stochastic
routing under time-varying uncertainty. Proc. VLDB Endow. 29, 4 (2020), 819–839.

[37] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In ICML. 4095–4104.

[38] Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. 2019. Temporal pattern attention
for multivariate time series forecasting. Machine Learning 108, 8 (2019), 1421–
1441.

[39] David So, Quoc Le, and Chen Liang. 2019. The evolved transformer. In ICML.
5877–5886.

[40] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-
temporal synchronous graph convolutional networks: A new framework for
spatial-temporal network data forecasting. In AAAI, Vol. 34. 914–921.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In NeurIPS, Vol. 30.

[42] Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu
Kou, Yunhai Tong, Mao Yang, and Lidong Zhou. 2020. Textnas: A neural architec-
ture search space tailored for text representation. In AAAI, Vol. 34. 9242–9249.

[43] Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, and Chris-
tian S. Jensen. 2021. AutoCTS: Automated Correlated Time Series Forecasting –
Extended Version. arXiv preprint arXiv:2112.11174 (2021).

[44] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with
graph neural networks. In SIGKDD. 753–763.

[45] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI. 1907–
1913.

[46] Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi,
and Hongkai Xiong. 2020. Spatial-temporal transformer networks for traffic flow
forecasting. arXiv preprint arXiv:2001.02908 (2020).

[47] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search. In ICLR.

[48] Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2013. Travel Cost Inference
from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models.
Proc. VLDB Endow. 6, 9 (2013), 769–780.

[49] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, and Bin Yang. 2021. Unsu-
pervised Path Representation Learning with Curriculum Negative Sampling. In
IJCAI. 3286–3292.

[50] Sean Bin Yang, Chenjuan Guo, and Bin Yang. 2020. Context-Aware Path Ranking
in Road Networks. TKDE (2020).

[51] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convo-
lutional networks: a deep learning framework for traffic forecasting. In IJCAI.
3634–3640.

[52] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. Gman: A
graph multi-attention network for traffic prediction. InAAAI, Vol. 34. 1234–1241.

[53] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting. In AAAI, Vol. 35. 11106–11115.

[54] Fatjon Zogaj, José Pablo Cambronero, Martin C Rinard, and Jürgen Cito. 2021.
Doing more with less: characterizing dataset downsampling for AutoML. Proc.
VLDB Endow. 14 (2021), 2059–2072.

983

