
Exploiting the Power of Equality-generating Dependencies
in Ontological Reasoning

Luigi Bellomarini

Banca d’Italia

luigi.bellomarini@bancaditalia.it

Davide Benedetto

Università Roma Tre

davide.benedetto@uniroma3.it

Matteo Brandetti

TU Wien

matteo.brandetti@gmail.com

Emanuel Sallinger

TU Wien & University of Oxford

sallinger@dbai.tuwien.ac.at

ABSTRACT
Equality-generating dependencies (EGDs) allow to fully exploit

the power of existential quantification in ontological reasoning

settings modeled via Tuple-Generating Dependencies (TGDs), by

enabling value-assignment or forcing the equivalence of fresh sym-

bols. These capabilities are at the core of many common reasoning

tasks, including graph traversals, clustering, data matching and

data fusion, and many more related real-world scenarios.

However, the interplay of TGDs and EGDs is known to lead

to undecidability or intractability of query answering in tractable

Datalog+/- fragments, likeWarded Datalog+/-, for which, in the sole

presence of TGDs, query answering is PTIME in data complexity.

Restrictions of equality constraints, like separable EGDs, have been

studied, but all achieve decidability at the cost of limited expressive

power, which makes them unsuitable for the mentioned tasks.

This paper introduces the class of “harmless” EGDs, that sub-

sume separable EGDs and allow to model a very broad class of

tasks. We contribute a sufficient syntactic condition for testing

harmlessness, an undecidable task in general. We argue that in

Warded Datalog+/- with harmless EGDs, ontological reasoning is

decidable and PTIME. From such theoretical underpinnings, we

develop novel chase-based techniques for reasoning with harmless

EGDs and present an implementation within the Vadalog system,

a state-of-the-art Datalog-based reasoner. We provide full-scale

experimental evaluation and comparative analysis.

PVLDB Reference Format:
Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, and Emanuel

Sallinger. Exploiting the Power of Equality-generating Dependencies

in Ontological Reasoning. PVLDB, 15(13): 3976 - 3988, 2022.

doi:10.14778/3565838.3565850

1 INTRODUCTION
Logic-based ontological reasoning is gaining renewed attention,

as witnessed by the recent resurgence of the Datalog language

in academia and in industry [4, 11, 24–26, 30, 59, 63]. Intuitively

speaking, an ontological reasoning task consists in answering a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.

doi:10.14778/3565838.3565850

conjunctive query 𝑄 over a database 𝐷 , augmented with a set of

logical rules Σ, as shown in the following example.

Example 1.1. A shock propagation scenario from our industrial
partners, where a database 𝐷 is augmented with a set of rules Σ
describing the domain, as follows.

𝐷={Own(Bob,C, 0.4), Own(Max,C, 0.35), Own(Alice,D, 0.5),
Own(Markus, E, 0.6), Company(C), Company(D), Company(E),
NPL(C), Exposure(C,D), Exposure(D, E)}.

Company(𝑐),Own(𝑝, 𝑐,𝑤),𝑤 > 0.3→ KP(𝑝, 𝑐) (𝜎1)

Company(𝑐),NPL(𝑐),→ ∃𝑓 Default(𝑐, 𝑓 , 𝑓) (𝜎2)

Default(𝑐1, 𝑓𝑥 , 𝑓1), Exposure(𝑐1, 𝑐2),→ ∃𝑓2 Default(𝑐2, 𝑓1, 𝑓2) (𝜎3)

Default(𝑐, 𝑓1, 𝑓2),KP(𝑝, 𝑐) → ∃𝑖 Inv(𝑝, 𝑐, 𝑖) (𝜎4)

An individual 𝑝 is a key person (KP) of a company 𝑐 if 𝑝 owns more
than 30% of the shares (𝑤) of 𝑐 (𝜎1). If a company 𝑐 is involved in
non-performing loans (NPL), then it will default on its debts, initiating
a failure event 𝑓 (𝜎2). If a company 𝑐2 is financially exposed with
another company 𝑐1 which undergoes a failure event 𝑓1, caused by
another failure 𝑓𝑥 , then 𝑐2 will be in turn involved in a failure 𝑓2
caused by 𝑓1 (𝜎3). Finally, a financial investigation 𝑖 regards each key
person of a defaulting company 𝑐 (𝜎4).

Rules in Σ are function-free Horn clauses, potentially includ-

ing existential quantification, i.e., Tuple-Generating Dependencies
(TGDs). They have the form ∀x 𝝓 (x) → ∃z 𝝍 (y, z), where 𝝓 (x)
and 𝝍 (y, z) are conjunctions of atoms over a relational schema

S. Universal quantifiers are implied and we shall omit them. The

semantics of TGDs is usually defined in an operational way with

an algorithmic tool known as the chase procedure [53]. Intuitively,

the chase expands 𝐷 with facts entailed via the application of the

TGDs in Σ, until all of them are satisfied, introducing fresh new

symbols (i.e., labelled nulls) to satisfy existential quantification.

Now, consider the ontological reasoning task in which, given 𝐷

and Σ, we want to understand whether two people are involved in

the same investigation via the Boolean Conjunctive Query (BCQ):

𝑞 ← Inv(Bob, _, 𝑧), Inv(Markus, _, 𝑧)

By applying the chase on 𝜎1, we derive KP(Bob,C), KP(Max,C),
KP(Alice,D) and KP(Markus, E). Then, we identify the defaulting

company Default(C, 𝜈1, 𝜈1) by 𝜎2, where 𝜈1 is a labelled null. The

activation of 𝜎3 propagates the default to company D, obtaining
Default(D, 𝜈1, 𝜈2), since company D is exposed with C. Then, 𝜎3

is activated again to produce Default(E, 𝜈2, 𝜈3). Finally, by 𝜎4 we

3976

https://doi.org/10.14778/3565838.3565850
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565850

derive Inv(Bob,C, 𝜈4), Inv(Max,C, 𝜈5), Inv(Alice,D, 𝜈6) and
Inv(Markus, E, 𝜈7), that is, the key people under investigation. Now,
it can be observed that the answer to𝑄 is negative, as 𝑣4 ≠ 𝑣7, while

in fact Markus and Bob should be part of the same investigation, as

they are involved in the same default chain initiated by 𝐶 .

Example 1.2. To capture such requirement, let us extend Σ by
adding the following set Σ𝐸 of rules.

KP(𝑝1, 𝑐),KP(𝑝2, 𝑐), 𝐼𝑛𝑣 (𝑝1, 𝑐, 𝑖1), 𝐼𝑛𝑣 (𝑝2, 𝑐, 𝑖2) → 𝑖1 = 𝑖2 (𝜂1)

Inv(𝑝1, 𝑐1, 𝑖1), Inv(𝑝2, 𝑐2, 𝑖2), Exposure(𝑐1, 𝑐2) → 𝑖1 = 𝑖2 (𝜂2)

If 𝑝1 and 𝑝2 are key persons of the same defaulted company 𝑐 , then
they should be involved in the same investigation (𝜂1). Again, two
key persons 𝑝1 and 𝑝2 of distinct defaulted companies 𝑐1 and 𝑐2 are
under the same investigation if 𝑐2 is exposed with 𝑐1 (𝜂2).

The rules in Σ𝐸 are Equality-Generating Dependencies (EGDs),
i.e., first-order implications of the form ∀x 𝝓 (x) → 𝑥𝑖 = 𝑥 𝑗 , where

𝝓 (x) is a conjunction of atoms over a relational schema and 𝑥𝑖 , 𝑥 𝑗
are variables in x. The semantics of EGDs is defined via a straight-

forward extension of the chase: as long as the rule premise applies,

the equality in the conclusion is enforced, either assigning a labelled

null to a constant value or to another labelled null, or comparing

two constants, which may potentially lead to chase failure by hard

violation of the rule.

In our case, from the application of EGD 𝜂1 on KP(Bob,C),
KP(Max,C), Inv(Bob,C, 𝜈4), Inv(Max,C, 𝜈5), we derive that𝜈4 = 𝜈5,

i.e., we assign Bob andMax to the same labelled null. Then, we acti-

vate 𝜂2 on Inv(Max,C, 𝜈5), Inv(Alice,D, 𝜈6), Exposure(C,D) and on
Inv(Alice,D, 𝜈6), Inv(Markus, E, 𝜈7),Debtor(D, E) to conclude that

𝜈5 = 𝜈6 and 𝜈6 = 𝜈7. As a result, thanks to the application of the

EGDs, all the key persons are grouped together and subjects to the

same investigation, with a positive answer to 𝑄 .

This example shows how the EGDs allow to exploit the expres-

sive power of existential quantification and efficiently solve many

relevant tasks through reasoning, which would be impossible to

express or inefficient to evaluate by using only TGDs, such as graph

navigation [3], feature-based clustering [22], data matching and

integration [37], data fusion [20], also in many real-world scenarios.

Reasoning Languages with EGDs. The interplay of TGDs and

EGDs leads to undecidability of ontological reasoningwithDatalog
±

fragments (e.g., Guarded, Warded and Shy), while, in the sole pres-

ence of TGDs, such task is PTIME in data complexity [24, 25, 41, 49].

For instance, the task is undecidable even with inclusion and func-

tional dependencies, or inclusion and key dependencies [31, 34].

There have been many attempts to identify Datalog decidable

fragments by imposing restrictions on the interaction between

TGDs and EGDs. Weakly-acyclic sets of TGDs guarantee decidable
and tractable query answering when interacting with EGDs [35, 36,

54]. However, while their expressive power is suited for data ex-
change scenarios [36], they are not helpful for ontological reasoning
because of their limitation in the joint use of existential quantifica-

tion and recursion. For instance, it is impossible to express simple

reasoning tasks like the one in Examples 1.1 and 1.2.

The class of separable EGDs enables a richer tractable interaction
with the TGD fragments devised for ontological reasoning (e.g.,

Guarded TGDs) [25, 27, 32]. Yet, the expressive power of the EGDs

is not exploited. In fact, separable EGDs can only enforce hard

constraints on ground values and do not contribute facts to the

reasoning query answer. For instance, the reasoning task captured

by EGDs in Example 1.2 cannot be expressed with separable EGDs.

Harmless EGDs. In this paper, we propose harmless EGDs, a novel
language for equality-generating dependencies that is well-suited

for ontological reasoning and allows to exploit existential quantifica-

tion to model a wide range of tasks. We formalize the language and

implement it in Vadalog, a state-of-the-art Datalog-based reasoner.

As a key feature, harmless EGDs non-trivially interact with warded
TGDs [41], a fragment of the Datalog

±
family of languages [29]

exhibiting very good balance between computational complexity—

with ontological reasoning being PTIME in data complexity—and

expressive power, in fact capturing SPARQL queries under the en-

tailment regime for OWL 2 QL. At the same time, harmless EGDs

do not affect decidability and tractability of the ontological reason-

ing task with warded TGDs. Intuitively, for every database and for

every query, any assignment of labelled nulls obtained through

the application of a harmless EGD, does not trigger the activation

of other rules that would not be activated otherwise. As a con-

sequence, no EGD can determine the derivation of a fact and, in

this sense, does not “harm” the chase procedure. Indeed, unlike

separable EGDs, harmless EGDs contribute facts to the ontological

reasoning task. Consider again TGDs of the Example 1.1 (warded)

and the EGDs of the Example 1.2 (harmless): in the absence of 𝜂1

and 𝜂2, a positive answer to 𝑄 would not be possible.

Warded Datalog
±
with harmless EGDs has broad practical appli-

cability in ontological query answering. In fact, our use of EGDs

is more general than separability and goes beyond pure value/id

invention [47], thanks to the possibility to group facts by linking

them via shared labelled nulls. In practice, this translates into the

power to jointly use existentials and EGDs to model the broad set

of tasks we have mentioned, including problems requiring the ex-

pressive power of transitive closure such as graph traversals and

search, in a compact and efficient fashion.

Our contribution can be summarized as follows:

• We introduce the class of harmless EGDs showing that they

non-trivially interact with TGDs and allow a broad application

of labelled nulls in ontological reasoning. After arguing that es-

tablishing whether a set of EGDs is harmless is undecidable, we

contribute a sufficient syntactic condition, namely safe taint-
edness, which witnesses harmless EGDs in many practical cases.

• We deal with reasoning with harmless EGDs in Warded Data-

log
±
and we prove the problem is decidable and PTIME in data

complexity. We provide the foundations for practical reasoning

algorithms with harmless EGDs based on a new variant of the
chase that considers limited portions of the reasoning graph.

• We describe the implementation of harmless EGDs in the

Vadalog system, a state-of-the-art reasoner [13].

• We provide full-scale experimental evaluation of harmless

EGDs in a variety of real-world and synthetic scenarios and vali-

date the effectiveness of our techniques. We compare our reasoner

with the top existing systems supporting EGDs, and show that it

exhibits superior performance and expressive power.

Overview. The remainder of this paper is organized as follows.

In Section 2 we provide the fundamental background notions. In

3977

Section 3 we present the new class of harmless EGDs and the prop-

erties to handle recursion and termination. In Section 4 we illustrate

the implementation of the harmless EGDs in the Vadalog system.

Section 5 is dedicated to the practical aspects and the experimental

evaluation. In Section 6 we discuss the related work. Our conclu-

sions are drawn in Section 7. For space reasons, further use cases,

examples and proofs are in the online Appendix [12].

2 PRELIMINARIES
Let us start by laying out the preliminary notions.

Relational Foundations. Let C, N, and V be disjoint countably

infinite sets of constants, (labelled) nulls and variables, respectively.
A lexicographic ordering is defined so that any constant in N follows

all the constants in C. A term is a constant, a variable or a labelled

null. A (relational) schema S is a finite set of relation symbols with

associated arities. Given a schema S, an atom is an expression 𝑅(𝑣),
where 𝑅 ∈ S is of arity 𝑛 ≥ 0 and 𝑣 is an 𝑛-tuple of terms. A database
(instance) 𝐷 over S associates to each relation symbol in S a relation
of the respective arity over the domain of constants and nulls. We

denote as dom(𝐷) the set of constants in 𝐷 . Relation members are

called tuples or facts. Sometimes we will use the terms tuple or fact

interchangeably. Given two sets of atoms 𝐴1 and 𝐴2, we define a

homomorphism from𝐴1 to𝐴2, a mapping ℎ : C∪N∪V→ C∪N∪V
such that ℎ(𝑡) = 𝑡 , if 𝑡 ∈ C (i.e., constants are preserved), and

for each atom 𝑎(𝑡1, . . . , 𝑡𝑛) ∈ 𝐴1, we have that ℎ(𝑎(𝑡1, . . . , 𝑡𝑛)) =
𝑎(ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) is in 𝐴2.

We define a partial homomorphismℎ from𝐴1 to𝐴2 a mapping of

a subset 𝐵 ⊆ 𝐴1 to𝐴2, i.e.,ℎ(𝐵) ⊆ 𝐴2. We say that a homomorphism

ℎ maps 𝐴1 onto 𝐴2, whenever ℎ(𝐴1) coincides with 𝐴2. Two atoms

𝑎1 (𝑡1, . . . , 𝑡𝑛) and 𝑎2 (𝑡1, . . . , 𝑡𝑛) are isomorphic if 𝑎1 and 𝑎2 refer to

the same predicate and there exists a mapping ℎ : C ∪ N ∪ V →
C∪N∪V s.t. ℎ(𝑡) = 𝑡 , if 𝑡 ∈ C (i.e., constants are preserved), and we

have that ℎ(𝑎1 (𝑡1, . . . , 𝑡𝑛)) = 𝑎1 (ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) = 𝑎2 (𝑡1, . . . , 𝑡𝑛)
and ℎ(𝑎2 (𝑡1, . . . , 𝑡𝑛)) = 𝑎2 (ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) = 𝑎1 (𝑡1, . . . , 𝑡𝑛), i.e., ℎ
is a bijection. This notion can be extended to sets. Two sets of

atoms 𝐴1 and 𝐴2 are isomorphic if every atom in 𝐴1 (resp. 𝐴2) has

an isomorphic atom in 𝐴2 (resp. 𝐴1).

Conjunctive Queries. A conjunctive query (CQ) 𝑄 over a schema

S is an implication 𝑞(x) ← 𝝓 (x, y), where 𝝓 (x, y) is a conjunction
of atoms over S, 𝑞(x) is an n-ary predicate that does not occur in

S, and x and y are vectors of terms. A Boolean conjunctive query
(BCQ) is a CQ of arity zero.

Dependencies. A set of Datalog
±
rules is a set of tuple-generating

dependencies (TGDs). A TGD is a first-order implication∀x 𝝓 (x) →
∃z 𝝍 (y, z), where 𝝓 (x) (the body) and 𝝍 (y, z) (the head) are con-
junctions of atoms over a relational schema and boldface variables

denote vectors of variables, with y ⊆ x. A TGD 𝜎 is satisfied by

a database 𝐷 (and we write 𝐷 |= 𝜎) if whenever there is a homo-

morphism 𝜃 such that 𝜃 (𝝓 (x)) ⊆ 𝐷 , there exists an extension 𝜃 ′ of
𝜃 (i.e., 𝜃 ⊆ 𝜃 ′) such that 𝜃 ′ (𝝍 (y, z)) ⊆ 𝐷 . An equality-generating
dependency (EGD) is a first-order implication ∀x 𝝓 (x) → 𝑥𝑖 = 𝑥 𝑗 ,

where 𝝓 (x) is a conjunction of atoms and 𝑥𝑖 , 𝑥 𝑗 ∈ x. A database 𝐷

over S satisfies an EGD 𝜂 if whenever there is a homomorphism 𝜃

such that 𝜃 (𝝓 (x)) ⊆ 𝐷 , then we have that 𝜃 (𝑥𝑖) = 𝜃 (𝑥 𝑗).
Ontological Reasoning. Given a database 𝐷 over S and a set

Σ = Σ𝑇 ∪ Σ𝐸 of TGDs (Σ𝑇) and EGDs (Σ𝐸), we name the models

of 𝐷 and Σ as the set of all databases 𝐵 (and we write 𝐵 |= 𝐷 ∪ Σ)
such that 𝐵 ⊇ 𝐷 , and 𝐵 |= Σ. The answer to a CQ 𝑄 over 𝐷 under

Σ is the set of facts 𝑡 such that 𝑡 ∈ 𝑄 (𝐵), where 𝐵 |= 𝐷 ∪ Σ. A
positive answer to a BCQ (𝐷 ∪ Σ |= 𝑄) corresponds to a non-

empty set of tuples, such that 𝑡 ∈ 𝑄 (𝐵). Query answering under

general TGDs is undecidable even when 𝑄 and Σ are fixed [24].

Warded Datalog
±
is a member of the Datalog

±
family with a good

trade-off between expressive power and computational complexity,

with CQ answering in PTIME. In the presence of EGDs, query

answering under TGDs is undecidable, even for simple classes of

EGDs and TGDs, such as functional and inclusion dependencies,

or key and inclusion dependencies [31, 34]. Existing fragments,

such as separable EGDs [23], allow very limited forms of interaction

between TGDs and EGDs, which do not hamper tractability and

decidability. CQ answering and BCQ answering under TGDs and

EGDs are LOGSPACE-equivalent as the decision version of CQ

answering and BCQ answering are mutually AC0-reducible [24].

Hence, we will consider BCQs without loss of generality.

The Chase. Chase-based procedures [53] repair a database 𝐷 by

adding facts to it, until it satisfies a set of constraints Σ. Intuitively,
the chase expands 𝐷 with facts inferred by applying Σ to 𝐷 into a

database chase(𝐷, Σ), possibly containing labelled nulls. A chase

execution chase(𝐷, Σ) builds a universal model for 𝐷 and Σ, i.e., for
every database 𝐵 that is a model for 𝐷 and Σ, there is a homomor-

phism mapping chase(𝐷, Σ) to 𝐵. Let us recall two working rules:

the TGD chase step and the EGD chase step. In the following, we

will refer to the oblivious chase [24]. Given a database 𝐷 , a TGD

𝜎 : 𝝓 (x) → ∃z 𝝍 (y, z) is applicable to 𝐷 if there exists a homo-

morphism 𝜃 such that 𝜃 (𝝓 (x)) ⊆ 𝐷 . Then, the TGD chase step

adds the fact 𝜃 ′ (𝝍 (y, z)) to 𝐷 , if not already in or already added to

𝐷 , where 𝜃 ′ ⊇ 𝜃 is a homomorphism that extends 𝜃 by mapping

the variables of z (if non-empty) to newly created labelled nulls

that follow lexicographically the ones previously introduced. An

EGD 𝜂 : 𝝓 (x) → 𝑥𝑖 = 𝑥 𝑗 is applicable to 𝐷 if there exists a ho-

momorphism 𝜃 such that 𝜃 (𝝓 (x)) ⊆ 𝐷 and 𝜃 (𝑥𝑖) ≠ 𝜃 (𝑥 𝑗). Given
𝝋 (x) = 𝜃 (𝝓 (x)) ⊆ 𝐷 , an EGD chase step𝝋 (x)

𝜂𝜃−−→ 𝑥𝑖 = 𝑥 𝑗 proceeds

as follows: (i) if both 𝑥𝑖 and 𝑥 𝑗 are constants, it fails; (ii) replaces

each occurrence of 𝜃 (𝑥 𝑗) with 𝜃 (𝑥𝑖), if 𝜃 (𝑥𝑖) precedes 𝜃 (𝑥 𝑗) in the

lexicographic order, or vice versa otherwise. The chase iteratively

applies (i) a TGD step once, (ii) the EGD step as long as applica-

ble, i.e., until a fixpoint is reached, which may lead to an infinite

sequence of chase step applications. The chase graph G(𝐷, Σ) is
a directed graph having as nodes the facts from chase(𝐷, Σ) and
having an edge from a node a to b if b is obtained from a by the

application of one TGD chase step.

Separable EGDs. Given a set of TGDs and EGDs Σ = Σ𝑇 ∪ Σ𝐸 , Σ𝐸
is separable from Σ𝑇 if for every database 𝐷 : (i) if the chase of Σ
over 𝐷 fails, then 𝐷 does not satisfy Σ𝐸 ; (ii) if the chase does not
fail, then we have that chase(𝐷, Σ) |= 𝑄 iff chase(𝐷, Σ𝑇) |= 𝑄 for

every BCQ 𝑄 . The main deficiency of such dependencies is their

limited unification power. While, syntactically, separable EGDs can

equate variables of predicates not appearing in S, they never cause

distinct labelled nulls to be unified, hence, they never contribute to

the query answer and can be verified against 𝐷 .

3978

3 HARMLESS EGDS
Towards the definition of a framework able to support ontological

reasoning with expressive interaction between TGDs and EGDs, in

this section we provide the theoretical foundations that underpin a

practical reasoning algorithm, as we shall see.

3.1 Harmlessness
The key idea of our reasoning framework is to consider a set

of EGDs Σ𝐸 to be harmless with respect to a set of rules Σ =

Σ𝑇 ∪Σ𝐸 (where Σ𝑇 are the TGDs), if chase(𝐷, Σ𝑇) produces a more

general result than chase(𝐷, Σ) for every 𝐷 . Intuitively, harmless-

ness requires that for every 𝐷 , chase(𝐷, Σ𝑇) can be mapped onto

chase(𝐷, Σ) with an assignment of the labelled nulls to either null

values or constant values. This corresponds to guaranteeing that

every fact of chase(𝐷, Σ) can be “reached” by specializing a fact in

chase(𝐷, Σ𝑇), via an assignment of the labelled nulls. Operationally,

this condition prevents the EGDs in Σ from interfering with the

activation of the TGDs: actually, harmless EGDs may not produce

facts that, in turn, fire TGDs that would not be activated otherwise

(e.g., in the sole presence of the TGDs): if it were the case, the ac-

tivated TGDs would produce facts potentially “unreachable” via a

mapping of chase(𝐷, Σ𝑇). As TGDs can determine the activation of

EGDs and not vice versa, harmless EGDs can be enforced after all

TGD chase steps have been performed, by applying the equalities

of Σ𝐸 on the facts of chase(𝐷, Σ𝑇) to fixpoint.

Definition 3.1 (Harmless EGDs). Given a set of TGDs and EGDs
Σ = Σ𝑇 ∪Σ𝐸 over a schema S, we define Σ𝐸 as harmlesswith respect to
Σ if for every database𝐷 over S, if chase(𝐷, Σ) does not fail, then there
exists a homomorphism ℎ mapping chase(𝐷, Σ𝑇) onto chase(𝐷, Σ).

Let us consolidate the intuition with the following example.

Example 3.2. Consider a formulation of the undirected graph con-
nectivity problem (UST-CONN) [62] based on connected components:
two nodes 𝑥 and 𝑦 are connected if they lie in the same connected
component, i.e., 𝑄 ← CC(𝑥, 𝑐),CC(𝑦, 𝑐). We augment a database 𝐷
holding the graph, with a set of harmless EGDs as follows.
𝐷={Node(a), Node(b), Node(c), Node(d), Edge(a, b), Edge(b, c),
Edge(c, d), Edge(a, d)}.

Node(𝑥) → ∃𝑧 CC(𝑥, 𝑧) (𝜎1)

Edge(𝑥,𝑦) → Edge(𝑦, 𝑥) (𝜎2)

CC(𝑥, 𝑧1), Edge(x, y),CC(𝑦, 𝑧2) → 𝑧1 = 𝑧2 (𝜂)

Every node is assigned to a new connected component (𝜎1). The graph
is undirected (𝜎2). Components linked by an edge are the same (𝜂).
The TGD applications to construct chase(𝐷, Σ𝑇) are as follows:

Node(a) → CC(a, 𝜈0); Node(b) → CC(b, 𝜈1); (𝜎1)

Node(c) → CC(c, 𝜈2); Node(d) → CC(d, 𝜈3); (𝜎1)

Edge(a, b) → Edge(b, a); Edge(b, c) → Edge(c, b); (𝜎2)

Edge(c, d) → Edge(d, c); Edge(a, d) → Edge(d, a); (𝜎2)

We then apply the EGD 𝜂 to fixpoint to derive chase(𝐷, Σ):
CC(a, 𝜈0), Edge(a, b),CC(b, 𝜈1) → 𝜈0 = 𝜈1; (𝜂)

CC(b, 𝜈0), Edge(b, c),CC(c, 𝜈2) → 𝜈0 = 𝜈2; (𝜂)

CC(c, 𝜈0), Edge(c, d),CC(d, 𝜈3) → 𝜈0 = 𝜈3; (𝜂)

As a final result, we obtain the facts CC(a, 𝜈0), CC(b, 𝜈0), CC(c, 𝜈0)
and CC(d, 𝜈0), where all the labelled nulls created by the TGD appli-
cations are mapped into the same value 𝜈0 by 𝜂.

Observe that in Example 3.2, after the application of the EGDs,

no further TGDs can be triggered, independently of the underlying

database instance 𝐷 . This is ensured by the requirement posed by

harmlessness, i.e., to be able to map chase(𝐷, Σ𝑇) onto chase(𝐷, Σ)
via a homomorphismℎ. Also notice that the specific homomorphism

is produced as a side effect of the EGD application. In this case we

have ℎ={𝜈0 → 𝜈0, 𝜈1 → 𝜈0, 𝜈2 → 𝜈0, 𝜈3 → 𝜈0}.

3.2 Safe Taintedness: A Syntactic Condition
We now study the problem of identifying a set of EGDs as harmless

with respect to Σ.

Theorem 3.3. Given a set of TGDs and EGDs Σ = Σ𝑇 ∪ Σ𝐸 ,
deciding whether Σ𝐸 is harmless with respect to Σ is undecidable.

In spite of such undecidability result, we introduce a sufficient

syntactic condition to check harmlessness. In particular, our condi-

tion applies when harmless EGDs interact with warded TGDs.

First, we recall some working definitions of the warded frag-

ment [41]. Let 𝑝 [𝑖] be the attribute in the 𝑖-th position of a predicate
𝑝 and refer to it as position. Let exist(𝜎) be the set of existentially
quantified variables of 𝜎 . Given a set of rules Σ, a position 𝑝 [𝑖] is
defined as affected if: (i) for some TGD 𝜎 ∈ Σ and some variable

𝑣 ∈ exist(𝜎), 𝑣 appears in position 𝑝 [𝑖], for some atom over 𝑝 in

Σ; (ii) for some TGD 𝜎 and some variable 𝑣 ∈ body(𝜎) ∩ head(𝜎),
𝑣 appears only in affected positions in body(𝜎) (i.e., it is harmful)
and in position 𝑝 [𝑖] in head(𝜎) (i.e., it is dangerous).
We are ready to introduce the notions of tainted position and tainted
variable, used in our syntactic condition.

Definition 3.4 (Taintedness). Given a set of rules Σ, a position 𝑝 [𝑖]
is inductively defined as tainted if: (i) 𝑝 [𝑖] is affected and Σ contains
an EGD 𝜂 = 𝝓 (x) → 𝑥𝑖 = 𝑥 𝑗 such that 𝑝 [𝑖] is the position of 𝑥𝑖 (resp.
𝑥 𝑗) in body(𝜂) and 𝑥𝑖 (resp. 𝑥 𝑗) appears only in affected positions of
body(𝜂) (it is harmful); (ii) for some TGD 𝜎 ∈ Σ and some variable
𝑣 ∈ body(𝜎) ∩ head(𝜎), 𝑣 appears in a tainted position in body(𝜎)
(resp. head(𝜎)) and in position 𝑝 [𝑖] in head(𝜎) (resp. body(𝜎)). A
variable appearing in a tainted position of a rule 𝜎 is named tainted
variable (w.r.t. 𝜎). Let tainted(𝜎) be the set of all the tainted variables
in the body of 𝜎 .

We now can exploit such definition to provide a syntactic condi-

tion, safe taintedness, that witnesses harmlessness in practice.

Theorem 3.5 (Safe taintedness). Let Σ = Σ𝑇 ∪ Σ𝐸 be a set of
TGDs Σ𝑇 and EGDs Σ𝐸 over schema S. The EGDs Σ𝐸 are harmless
with respect to Σ if for every dependency 𝜎 ∈ Σ: (i) every variable
𝑣 ∈ tainted(𝜎) appears only once in body(𝜎), and, (ii) there are no
constants appearing in tainted positions.

Consider the set of TGDs of Example 1.1 and EGDs of Example 1.2.

Position Inv [3] is tainted, since: it is affected (because of the existen-
tial quantification in 𝜎4) and, in 𝜂1 (and 𝜂2), Inv [3] is the position
of 𝑖1 (resp. 𝑖2), which appears only in affected positions of body(𝜂1)
(and body(𝜂2)). However, the tainted variables 𝑖1 and 𝑖2 appear only
once in the body of 𝜂1 (and 𝜂2) and no constants appear in Inv [3].

3979

Therefore Σ is harmless. Similarly, the EGD of Example 3.2 is harm-

less by safe taintedness. Position CC[2] is tainted since: it is affected
(existential quantification 𝜎1) and, in 𝜂, CC[2] is the position of 𝑧1

(resp. 𝑧2), which appears only in affected positions of body(𝜂). Also
in this case, safe taintedness holds as 𝑧1 (resp. 𝑧2) appears only once

in the body of 𝜂 and no constants appear in CC[2].
3.3 Decidability and Complexity Results
We now contribute the core theoretical properties that enable an

efficient practical implementation.

Warded Semantics. We need to recall more properties of the

warded fragment [14, 41]. Given a set of rules Σ, a rule 𝜎 ∈ Σ is

warded if all the dangerous variables 𝑣 ∈ body(𝜎) appear in a single

body atom, the ward, which shares only non-harmful variables

with other body atoms. A set Σ is warded if the body variables

of all the rules in Σ are warded. We say that a CQ 𝑄 is warded

w.r.t. a set of TGDs Σ𝑇—and we name it Warded Conjunctive Query
(WCQ)—if Σ𝑇 ∪ {�̂�} is warded, where �̂� is a TGD expressing 𝑄 . In

our experience, the class of WCQs is sufficiently wide to cover all

the real-world scenarios of our interest such as those dealt with

in this paper, and we could verify that well-known and complex

ontologies of most comprehensive chase benchmarks [15] only

use WCQs. One favourable property of WCQs is that they can

be equivalently rewritten into atomic queries, i.e., having a single

body atom (proof in the Appendix). Also note that every BCQ 𝑄

is a WCQ, since no variables propagate to the head of �̂� . In the

rest of the paper, we will keep referring to BCQs to discuss the

theoretical results without loss of generality (see Section 2), and,

after presenting the mentioned rewriting approach, consider WCQs

in the implementation and experimental evaluation.

A set of warded TGDs Σ𝑇 has the property that after normaliza-

tion steps (i.e., harmful joins elimination [9]), query answering on

𝐷 under Σ𝑇 can be performed over a variant of the oblivious chase

(which we name chase𝑊). In such variant, an instance is repaired

by activating a TGD step only if the TGD produces a fact that, up

to renaming of labelled nulls, is not already in or has been already

added to 𝐷 . The execution of the chase for CQ answering in the

warded fragment always leads to a finite sequence of chase steps.

We capture this consideration in the following theorem that

directly derives from recent work [14, Th. 2].

Theorem 3.6. Given a set Σ𝑇 of warded TGDs and a database 𝐷 ,
for every BCQ 𝑄 , it holds chase𝑊 (𝐷, Σ𝑇) |= 𝑄 iff chase(𝐷, Σ𝑇) |= 𝑄 .

We will refer to the equivalence assumption of isomorphic facts

and to the specific chase chase𝑊 as warded semantics.

Decidability.While warded semantics applies to warded TGDs, no

conclusions can be drawn on whether it is applicable with warded

TGDs and harmless EGDs (and, as we shall see, it is not). Hence,

to argue for the decidability of BCQ answering in our context, we

consider the universal semantics of 𝐷 and Σ and we represent it

as a purely theoretical chase𝐵 (𝐷, Σ𝑇) ⊆ chase(𝐷, Σ𝑇), finite and

BCQ-equivalent to chase(𝐷, Σ𝑇), i.e., a universal model for 𝐷 ∪ Σ𝑇
(the finiteness of chase𝐵 is proved in the Appendix). To decide

BCQs with harmless EGDs, after checking whether 𝐷 ∪ Σ is satis-

fiable, we apply the TGDs Σ𝑇 over 𝐷 to construct chase𝐵 (𝐷, Σ𝑇),
then we apply Σ𝐸 to fixpoint, i.e., we compute chase𝐻 (𝐷, Σ) =

Figure 1: Chase application for Example 3.9.

chase(chase𝐵 (𝐷, Σ𝑇), Σ𝐸). Finally, we answer 𝑄 on chase𝐻 (𝐷, Σ),
as chase(𝐷, Σ) |= 𝑄 iff chase𝐻 (𝐷, Σ)) |= 𝑄 . The next result argues

for the correctness of our technique for BCQ decidability.

Theorem 3.7. Given a set Σ = Σ𝑇 ∪Σ𝐸 of warded TGDs and harm-
less EGDs with respect to Σ, and a database 𝐷 , if 𝐷 ∪ Σ is satisfiable,
for every BCQ 𝑄 , it holds chase𝐻 (𝐷, Σ) |= 𝑄 iff chase(𝐷, Σ) |= 𝑄 .

Data Complexity. Our next result shows that the presence of

harmless EGDs does not increase the data complexity of the warded

fragment, which is still in PTIME.

Theorem 3.8. BCQ answering for Warded Datalog± and harmless
EGDs is PTIME-complete in data complexity.

3.4 Relaxed Warded Semantics
We now concentrate on the correctness and the termination of the

chase in our framework. We start by investigating the relationship

between warded semantics and harmless EGDs.

Example 3.9. Consider the problem of detecting triangles in a graph.
In the following case, we have a graph with a single connected com-
ponent and three distinct triangles with non-overlapping edges.
𝐷={Edge(a, b), Edge(b, c), Edge(c, a), Edge(b, d), Edge(d, a),
Edge(c, e), Edge(e, b)}

Edge(𝑥,𝑦), Edge(𝑦, 𝑧), Edge(𝑧, 𝑥), 𝑥 < 𝑧 → ∃𝑤 T(𝑥,𝑦, 𝑧,𝑤) (𝜎1)

T(𝑥,𝑦, 𝑧,𝑤) → Cluster(𝑥,𝑤) (𝜎2)

T(𝑥,𝑦, 𝑧,𝑤) → Cluster(𝑦,𝑤) (𝜎3)

T(𝑥,𝑦, 𝑧,𝑤) → Cluster(𝑧,𝑤) (𝜎4)

The chase output is shown in Figure 1. Nodes 𝑥 , 𝑦 and 𝑧 are part of
the same triangle denoted by the existentially quantified variable𝑤 .
With the condition 𝑥 < 𝑧, we select only a triple of nodes for each
triangle (𝜎1). Then, Cluster stores the group of each node (𝜎2, 𝜎3, 𝜎4).

Suppose we want to group the triangles that form a connected com-

ponent. We add the harmless EGD 𝜂 = Cluster(𝑥, 𝑧),Cluster(𝑥, 𝑧′)
→ 𝑧 = 𝑧′ and the query 𝑄 ← Cluster(𝑥, 𝑐),Cluster(𝑦, 𝑐).

Yet, it turns out that harmless EGDs are incompatible with the

warded semantics: it considers facts equivalent up to renaming of

labelled nulls (i.e., isomorphic facts), whereas EGDs assign specific

values to labelled nulls modifying their identity. In the example, we

cannot rely on warded semantics and we need to generate multiple

copies of equivalent facts, e.g., for Cluster (a, 𝜈1) and Cluster (a, 𝜈2).
Actually, it is only from the comparison of different copies that 𝜂

3980

can enforce 𝜈1 = 𝜈2 = 𝜈3. However, not all the copies are needed:

for example, once from Cluster (c, 𝜈1) and Cluster (c, 𝜈2) we establish
𝜈1 = 𝜈2 and from Cluster (c, 𝜈1) and Cluster (c, 𝜈3) we derive 𝜈1 = 𝜈3,

we do not need both Cluster (b, 𝜈2) and Cluster (b, 𝜈3), as 𝜈2 = 𝜈3

already holds by transitivity.

Revisiting the Chase. In Theorem 3.7, we leveraged the universal

model of𝐷∪Σ𝑇 to build chase𝐻 (𝐷, Σ). As we cannot choose chase𝑊
to provide an efficient implementation of chase𝐵 , our goal is to
define a relaxed warded semantics chase𝐵𝑊 (𝐷, Σ), a finite restriction
of chase(𝐷, Σ) such that for every query 𝑄 , chase𝐵𝑊 (𝐷, Σ) |= 𝑄 iff

chase(𝐷, Σ) |= 𝑄 even when Σ contains a set of harmless EGDs.

To define chase𝐵𝑊 , we need to introduce the notion of warded
forestW(G) of a chase graph G(𝐷, Σ). We refer to linear TGDs as

TGDs that have a single body atom, warded join TGDs as TGDs that

propagate dangerous variables and the remaining as non-linear join

TGDs. The warded forest is the subgraph consisting of all nodes of

the chase graph plus all the edges that correspond to the application

of linear TGDs, and one edge for each warded join TGD, the one

from ward. As a result, the facts are located in disconnected trees.

The fact b is the track of a fact a, denoted as b = track(a), if b is

the root of the tree in the warded forest where a belongs.

Definition 3.10 (T-isomorphism). Let Σ be a set of warded TGDs,
𝐷 a database, and 𝑇 a fact of the chase graph G(Σ, 𝐷). Two facts a
and b are 𝑇 -isomorphic, if they are isomorphic and have the same
track 𝑇 = track(a) = track(b).
T-isomorphism is a key notion to define our relaxed warded seman-

tics chase𝐵𝑊 . Operationally, it is an oblivious chase variant where

an instance is repaired by activating a TGD step only if the TGD

produces a fact that is not T-isomorphic to any fact that is already

in or has been already added to 𝐷 . We define it as follows.

Definition 3.11 (RelaxedWarded Semantics). Given a database𝐷 , a
set of warded rules Σ, letQ be the quotient set chase(𝐷, Σ)/T , induced
by the 𝑇 -isomorphism T . We define the relaxed warded semantics
chase𝐵𝑊 (𝐷, Σ) as the set of all the class representatives of Q, one for
each equivalence class of Q.

The next results argue for the boundedness of chase𝐵𝑊 (𝐷, Σ) and
the correctness of our approach to CQ answering.

Theorem 3.12. Let S be a database schema and𝑤 the maximal
arity of its predicates. Given a database𝐷 and a set of warded TGDs Σ,
both defined for S, let 𝑃 be the set of pairs ⟨𝑇, a⟩ where𝑇 = track(a).
There is a constant 𝛿 depending on S, dom(𝐷) and 𝑤 , such that if
|𝑃 | > 𝛿 , then 𝑃 contains at least two T-isomorphic facts.

Towards an implementation of chase𝐻 that uses our relaxed warded

semantics, we redefine chase𝐻 (𝐷, Σ) as chase(chase𝐵𝑊 (𝐷, Σ𝑇), Σ𝐸).
Theorem 3.13. Given a set Σ = Σ𝑇 ∪ Σ𝐸 of warded TGDs and

harmless EGDs with respect to Σ, and a database 𝐷 , if 𝐷 ∪ Σ is
satisfiable, for every BCQ 𝑄 , it holds chase(𝐷, Σ) |= 𝑄

iff chase(chase𝐵𝑊 (𝐷, Σ𝑇), Σ𝐸) |= 𝑄 .

Observe that the number of steps needed to build chase𝐻 is

polynomial in data complexity.

Theorem 3.14. Given a set Σ = Σ𝑇 ∪ Σ𝐸 of warded TGDs and
harmless EGDs with respect to Σ, and a database 𝐷 , if 𝐷 ∪ Σ is satis-
fiable, then building chase𝐻 (𝐷, Σ) is in PTIME in data complexity.

3.5 Harmless, Separable EGDs, and Datalog±

Before introducing our practical reasoning procedure, let us briefly

discuss the relationship between harmless and separable EGDs.

Theorem 3.15. If a set of TGDs and EGDs Σ = Σ𝑇 ∪Σ𝐸 is separable
then Σ𝐸 is harmless w.r.t. Σ (and not vice versa).

Unlike separable, harmless EGDs do not limit the possible causes

of chase failure to inherent violations of Σ𝐸 by 𝐷 . On the contrary,

a violation of Σ𝐸 may depend on facts generated by the TGDs. The

following example highlights this aspect.

Example 3.16. Consider again the formulation in Example 3.2,
and let𝐷={Node(a), Node(b), Node(c), Node(d), Node(e), Edge(a, b),
Edge(b, c), Edge(c, d), Edge(d, e), CC(a, k1), CC(d, k2)}.
Nodes a and d are assigned to identifiers CC(a, k1) and CC(d, k2).
The application of 𝜂 propagates 𝑘1 to all the nodes belonging to the

same connected component generating the factsCC(b, k1),CC(c, k1),
CC(d, k1). Applying 𝜂 to CC(d, k1), Edge(d, e), CC(e, k2) causes a
hard violation (i.e., chase failure) since 𝜂 tries to enforce 𝑘1 = 𝑘2.

In this case, the rule set is not separable, yet 𝜂 is harmless w.r.t. Σ.
In fact, while separability assumes EGDs are pre-validated against

facts in 𝐷 , a hard violation of harmless EGDs may also depend on

the facts generated in the chase. As we witness in this case, the

violation of 𝜂 depends on the facts generated by 𝜎1 and by the

replacement of the labelled nulls derived by the application of 𝜂.

Having shown that harmlessness generalizes separability, we

take up our comparison with two further reflections. First, as we

have seen for harmless EGDs, checking whether a set of EGDs

is separable from a set of TGDs is also an undecidable task and

only a sufficient syntactic condition (non-conflicting sets) has been
provided in that context as well [28]. Second, although harmless-

ness and separability are both defined independently of the TGD

fragment, let us analyze how their properties in fact depend on

it. Thanks to the particularly restrictive notion of non-conflicting

sets, in separable EGDs, the syntactic condition, decidability, and

complexity results hold in combination with multiple fragments.

In fact, when non-conflicting sets of EGDs interact with Linear or

Guarded TGDs (which do not allow or limit joins, respectively),

query answering is decidable and in PTIME [25]. In spite of the

less restrictive constraints posed by harmless EGDs, the syntactic

condition (safe taintedness) is also independent of the fragment.

Moreover, for the entire class of harmless EGDs, we have proven

decidability and data complexity results for warded TGDs, hence

with a high level of generality and broad applicability.

Beyond this, although the notion of harmlessness is less restric-

tive than separability, we believe that decidability and data com-

plexity results can be extended to other Datalog data-tractable frag-

ments that do not have a containment relationship with warded

TGDs, such as Shy, Guarded, and Weakly Sticky [57]. Intuitively, as

by Definition 3.1, independently of the TGD fragment, the applica-

tion of harmless EGDs in the chase procedure does not trigger any

rules that would not be triggered by the sole TGDs, harmless EGDs

should neither affect termination nor increase data complexity.

3.6 T-Isomorphism Termination Strategy
The results of Section 3.4 suggest a practical procedure to reason

under warded TGDs and harmless EGDs.

3981

Along the lines of Theorem 3.13, in order to answer a query 𝑄

in the presence of TGDs and EGDs, we can construct the instance

chase𝐻 (𝐷, Σ) in two steps: (i) we build chase𝐵𝑊 (𝐷, Σ) by activating
a TGD chase step only if it produces facts that are not T-isomorphic

to facts already generated (i.e., relaxed warded semantics); (ii) we

then activate EGD chase steps to fixpoint over chase𝐵𝑊 (𝐷, Σ).
We provide an efficient algorithm for the first step of such pro-

cedure, which we name T-isomorphism termination strategy.
Algorithm Description. Algorithm 1 determines whether a TGD

chase step must be activated by invoking Algorithm 2, which checks

whether a fact that is going to be generated is T-isomorphic to an

existing one. The latter relies on the following two data structures.

(1) The fact structure is a structured representation of a fact a,
with three distinct fields: (i) generating_rule, the kind of rule

of Σ𝑇 (linear / warded join / non-linear join) that generated a;
(ii) w_parent, the parent fact in the warded forest from which

a is generated; (iii) w_track, the ultimate root of the connected

component containing a in the warded forest.

(2) The track structure T stores the nodes of the warded forest

incrementally built during the TGD chase, grouping them by the

track (root) of the connected component of the warded forest

to which each node (i.e., fact) belongs. T is a dictionary of sets

of facts. More precisely, each element T[a.w_track] represents
the set of facts of the tree (i.e., connected component) rooted in

a.w_track in the warded forest.

Algorithm 1 The Algorithm for chase𝐵𝑤 (𝐷, Σ).

1: function chase(𝐷, Σ)
2: for all a ∈ D do
3: a.w_track = a ⊲ input facts are tracks

4: for all 𝜎 ∈ Σ𝑇 and x to which 𝜎 applies do ⊲ for all TGDs

5: if check_termination(𝜎 (x)) then
6: 𝐷 = 𝐷 ∪ {𝜎 (x) }

Algorithm 2 T-isomorphism Termination Strategy.

1: function check_termination(a)
2: if a.generating_rule == {LINEAR orWARDED} then
3: a.w_track = a.w_parent.w_track
4: if ∃g ∈ T[(a.w_track)] s.t. a isomorphic to g then
5: return false ⊲ T-isomorphism found

6: else
7: T[a.w_track].append(a)
8: return true
9: else if a ∉ T then ⊲ other non-linear generating rules

10: a.w_track = a
11: T[a.w_track].append(a) ⊲ new root addition

12: return true
13: else ⊲ the new tree is redundant

14: return false

The algorithm assumes, without loss of generality, that: the TGDs

at hand are warded, the EGDs are harmless and the existential

quantification appears only in linear TGDs, as a rewriting to this

form is always possible [14]. Linear and warded join TGDs produce

facts a (line 2), for which, in the base case, T-isomorphism checks

must be performed. In this case, the track of a is inherited from its

direct parent (line 3). The track structure restricts the isomorphic

check to the local connected component of the warded forest (line 8-

10), featuring a form of local detection. If a T-isomorphic fact is found

(line 4), the algorithm blocks the generation of a. Facts derived
from non-linear join TGDs are the roots of new trees (connected

components) of the warded forest (line 11). New trees are generated

unless their root is already present in the track structure T (line 9).

As we assume that non-linear join TGDs do not have existential

quantification and do not propagate labelled nulls, their possible

generation is efficiently checked as set containment of ground facts.

4 SYSTEM ARCHITECTURE
We describe the implementation of harmless EGDs in a dedicated

processing module in the Vadalog system [13], which exploits the

T-isomorphism termination strategy algorithm to enable the termi-

nation of the reasoning process while upholding correctness.

The Vadalog system is a state-of-the-art reasoner whose core

language is based on Warded Datalog
±
. Among the many features,

it natively supports ontological query answering, probabilistic rea-

soning, numeric computations (i.e., standard and monotonic aggre-

gations). Let us briefly describe the Vadalog system architecture.

System Architecture. Given a set of rules Σ and a CQ𝑄 : 𝑞(x) ←
𝝓 (x, y), an active pipeline is compiled out of them, where atoms cor-

respond to filters, connected by pipes that denote the input-output

transformations applied by the rules. Data flow from sources fil-

ters, the extensional atoms, to the target, the query, undergoing

the transformations (e.g., selections, projections, joins, value in-

ventions) performed by the rules. Finally, the facts returned by the

output filter are those composing the CQ answer. This process is

implemented by four dedicated architectural components.

(1) The CQ processor rewrites 𝑄 (which is a WCQ) into an atomic

query as follows: the set of rules Σ is updated as Σ = Σ ∪ {𝜌𝑄 },
where 𝜌𝑄 = 𝜈 (x) ← 𝝓 (x, y) and 𝜈 is an invented atom. Then 𝑄

is rewritten into the atomic query �̂� : 𝑞(x) ← 𝜈 (x).
(2) The logic optimizer performs rewritings and syntactic condition

checks. It checks the safe taintedness property; if satisfied, it

rewrites the EGDs into (i) a TGD with the same body and the

head composed of a new artificial atom; (ii) an EGD whose body

is the artificial atom and whose head is the original EGD head.

This simplifies the management of the operations required by

the body of the EGDs (e.g. joins and selection).

(3) The logic compiler transforms TGDs and EGDs into a reasoning

access plan: it produces a pipeline in the form of a predicate

graph where each node (filter) represents an atom and there is

an edge (pipe) from nodes m to n if there is a rule with m in the

body and n in the head. Extensional atoms are mapped into the

pipeline sources and 𝑞(x) corresponds to the output filter.

(4) The query compiler converts the logic pipeline into a reasoning
query plan, where the nodes are translated into active data scans,
connected by intermediate buffers. In our architecture, we have

four different types of scan: a linear scan for linear TGDs, a

join scan for join TGDs, an EGD scan for harmless EGDs, and

an output scan for the query. Note that, with the rewriting

3982

technique in step (1), a CQ is implemented by just annotating

the 𝑞(x) filter as “output” and injecting a join rule into Σ.

Execution Model. The reasoning process follows a pull-based
(query-driven) approach, where each filter (i.e., scan) reads facts

from the respective parent. Such implementation is a generalization

of the volcano iterator model [42] and allows to activate only the

chase steps required to answer a query without generating the

whole output of the chase procedure. The pull action starts from

the output scan (i.e., corresponding to the CQ atom 𝑞(x)), which
asks for output facts and propagates the request down to its pre-

decessors, triggering the invocations along the pipeline searching

for available facts. Scans interact with each other using primitives

open(), next(), get(), close(), which respectively open the par-

ent stream, ask for the presence of a fact to fetch, obtain it, and

close the communication.

The pipeline in Figure 2 is associated with an alternative formu-

lation of the UST-CONN problem, as follows.

Example 4.1. The UST-CONN problem is here modeled by the
following set of TGDs and harmless EGDs.

Edge(𝑥,𝑦) → ∃𝑧 Conn(𝑥,𝑦, 𝑧) (𝜎1)

Edge(𝑥,𝑦) → ∃𝑧 Conn(𝑦, 𝑥, 𝑧) (𝜎2)

Conn(𝑥,𝑦, 𝑧1),Conn(𝑦,𝑤, 𝑧2) → 𝑧1 = 𝑧2 (𝜂)

We assign each edge to a connected component (𝜎1 and 𝜎2). We reverse
the edges to support undirected graphs (𝜎2). Edges sharing a node are
assigned to the same connected component (𝜂).

q(𝑥,𝑦) ← Conn(𝑥, _, 𝑧),Conn(𝑦, _, 𝑧) (𝑄)

By the query 𝑄 we ask whether the nodes 𝑥 and 𝑦 belong to the same
connected component, i.e., are mutually reachable.

Figure 2: The execution pipeline of Example 4.1.

4.1 Harmless EGDs Module
Let us consider Figure 2, where scans 𝑒 and 𝑓 refer to the linear

TGDs 𝜎1 and 𝜎2, 𝑐 and 𝑑 to the EGD 𝜂. The query 𝑄 is represented

by the output scan 𝑔, whereas 𝑏 is the postprocessing egd scan.
The application of an EGD updates the labelled nulls identity

appearing in the facts produced by TGDs. The EGD module limits

such updates to the facts that are candidates to answer a specific

query. The correctness of such approach is guaranteed as: (i) since

the EGDs are harmless, an EGD chase step never triggers other

TGDs or EGDs, and (ii) the identity of labelled nulls in Warded

Datalog
±
is not relevant to activate TGD chase steps (due to harmful

join elimination [9]), i.e., does not trigger any further scans.

Our implementation relies on the postprocessing egd scan (b),
the sink node of the pipeline. It retrieves all the facts involved in the

query (g), replacing the labelled nulls in the facts that are candidate

to answer the query. It is also connected to the EGD scans (c), that
apply EGD chase steps. The egd scans use an ad-hoc data structure,

named equality structure, that memorizes the assignments.

The postprocessing scan triggers all EGD scans until saturation.

At every invocation, the EGD scans enforce a new equality between

values and update the equality structure. When the EGD scans are

saturated, the postprocessing scan triggers the output scan, which

propagates the request to the underlying TGD scan and assigns the

labelled nulls in the retrieved facts. Whenever a TGD scan is trig-

gered, a T-isomorphism wrapper executes Algorithm 2 to control

termination. We implemented two types of equality structures.

Equality Graph. The nodes store labelled nulls and constants.

When an equality between values is enforced by the EGDs, an

undirected edge is created between them. A connected component

contains all the labelled nulls that are assigned to the same value.

Equality Hash Table. Each row of the hash table is of the type

𝜈 → 𝑒 , where 𝜈 is a labelled null and 𝑒 is the assigned value. To save

memory, our implementation shares value objects among nulls and

just stores references [38].

scenarios L/⊲⊳ TGDs L/⊲⊳ recur L/⊲⊳ EGDs ∃ TGDs CQs

SynthA 40/50 10/20 10/20 50 51

SynthB 70/30 20/10 20/10 40 41

SynthC 70/50 15/15 10/10 30 31

SynthD 95/25 0/5 0/25 50 51

SynthE 115/30 5/0 25/0 25 26

SynthF 80/45 0/0 15/15 45 46

Figure 3: iWarded parameters of the synthetic scenarios.

5 EXPERIMENTAL EVALUATION
In Section 5.1 we investigate the impact of specific properties of

warded TGDs. In Section 5.2 we compare against other systems

supporting EGDs. In Section 5.3 we demonstrate the effectiveness of

harmless EGDs for graph traversal problems. In Section 5.4 we vali-

date our system with real-world scenarios that can be handled with

harmless EGDs. In Section 5.5 we compare our equality structures.

Test Setup. The Vadalog system was invoked via its REST interface.

All external input and output sources have been organized in CSV

files. We ran each experiment 10 times, averaging the elapsed times.

Hardware Configuration. We used a cloud instance of the Vada-

log system, running Ubuntu v18 in a Linux machine with six physi-

cal 1.9 GHz Xeon v3 cores, 16 GB of RAM, and a 512 GB SSD.

5.1 iWarded: Synthetic Scenarios
To study the impact of the properties of warded TGDs and harmless

EGDs on the performance of Vadalog, we used iWarded [10], a

generator of Warded benchmarks. It controls the fragment inter-

nals such as the number of linear, non-linear join and warded join

TGDs, the recursion length of the TGDs, the presence of existential

quantification, the number of tainted positions, and the number of

harmless EGDs. It is worth mentioning that the recursion length of

3983

Figure 4: Reasoning statistics for the experimental evaluation.

3984

conn(X,Y,Z) :- edge(X,Y).

𝑍1 = 𝑍2 :- conn(X,Y,𝑍1), conn(Y,Z,𝑍2).

Q: q(X,Y) :- conn(X,_,Z), conn(Y,_,Z).

(i)

conn(X,Y) :- edge(X,Y).

conn(X,Y) :- conn(X,Z), edge(Z,Y).

Q: q(X,Y) :- conn(X,Y).

(ii)

CALL gds.alpha.allShortestPaths
YIELD sourceNodeId,targetNodeId
MATCH (source:NODE)
WHERE id(source)=sourceNodeId
MATCH (target:NODE)
WHERE id(target)=targetNodeId
RETURN source,target

(iii)

Figure 5: Three alternative formulations of a query for the UST-CONN problem: (i) Harmless EGDs in Vadalog; (ii) transitive
closure in Vadalog; (ii) Cypher query expressed with Neo4j 4.0 Community Edition, graph data science (GDS) library [1, 64].

the TGDs is one of the main indicators for measuring the complex-

ity of a program. Intuitively, the complexity grows with the number

of interacting predicates in each recursive round, that determine

the number of chase steps triggered by each set of mutually recur-

sive TGDs in Σ𝑇 . The input data have also been generated with

iWarded, which guarantees uniform distributions.

Description of the Scenarios. We generated six different scenar-

ios (Figure 3), each composed of 200 rules, distributed among TGDs

and EGDs. Each scenario comprises about 20k input facts and uses

a different configuration of the number of linear/join (L/⊲⊳) TGDs,

recursive TGDs, EGDs, and TGDs with existentials. We evaluated

each scenario with different conjunctive queries, for a total of 246

CQs. Our queries have been generated by iWarded and then man-

ually curated to incorporate most of the possible joins between the

intensional atoms of the target schema, which also motivates the

different number of queries tested for each scenario. SynthA and

SynthD have the highest number of join EGDs; SynthA, SynthB and

SynthC present many recursive TGDs; SynthA has a greater number

of L EGDs w.r.t. the number of join EGDs; SynthD and SynthE are

symmetric in the number of EGDs and recursive TGDs; SynthF has

a balanced number of join EGDs and L EGDs and no recursion.

Discussion of the Results. For each scenario, Figure 4(a) reports

the overall execution time, which is computed as the sum of average

chase time and average query time. The marginal impact of the

CQs on times is not evaluated here but specifically addressed in

the chase-related scenarios in Section 5.2. The high number of join

TGDs and join EGDs and the extensive use of recursion impact

on the execution times. The worst observed performance (SynthA)
depends on two facts: the production of many labelled nulls in

recursive steps activates many EGD steps and overloads the equality

structure; the presence of many harmful joins fragments the warded

forest and produces many isolated trees. As T-isomorphism prunes

isomorphic facts in the same connected components, many coexist

in different trees. Scenarios SynthB, SynthC and SynthD confirmed

that the presence of many join EGDs, harmful joins and recursive

TGDs highly affects the performance. However, such scenarios have

fewer recursive TGDs than SynthA, for whose execution required

more than 20 seconds. In SynthE and SynthF, Vadalog shows the best
performance thanks to the absence of harmful joins and recursive

TGDs. In Figure 4(b) we show that the number of equalities enforced

by the EGDs is proportional to the execution times.

5.2 Related Chase-based Tools
All existing chase-based tools supporting EGDs allow a limited

form of interaction between TGDs and EGDs and many of them

rely on weak acyclicity [35, 36, 54], with limited use of existential

quantification with recursive TGDs. Other chase-based tools adopt

broader TGD fragments (e.g., Shy [50]), yet either do not support

EGDs or rely on separable EGDs in the form of functional depen-

dencies (FDs). To the best of our knowledge, Vadalog is the only

system that supports a richer interaction between TGDs and EGDs.

Systems Tested.We then limit the expressive power of Vadalog

and consider only the scenarios that can be modeled via weakly

acyclic sets of TGDs and EGDs, mostly data exchange tasks [36].

Data exchange consists in transforming an instance of a source

schema into an instance of a target schema via source-to-target

(s-t) TGDs and target TGDs and EGDs. We look at the systems and

scenarios of ChaseBench [15], a comprehensive chase benchmark.

Among the systems analyzed, we select LLunatic [39, 40] and

RDFox [58], which support EGDs with weak acyclicity [19, 39].

We excluded other systems as they either do not support EGDs

(Graal [8] and DLV [50, 51]), or support only FDs (ChaseFUN [21]),

or did not terminate in three hours (PDQ [17, 18] and DEMo [61]).

LLunatic is an open-source data exchange tool that can handle

s-t TGDs, target TGDs, and EGDs and compute certain query an-

swering on the target schema. It runs on top of PostgreSQL [15]

and transforms the dependencies into a SQL script that materializes

all the target relations, before executing the query.

RDFox is a high-performance RAM-based Datalog engine which

implements a parallel variant of the seminaive algorithm [15, 40].

Description of the Scenarios.We pick theChaseBench scenarios

with a significant presence of EGDs. Specifically, we consider two

scenarios from IBench, a tool for generating sets of TGDs and

EGDs [5]. In particular, STB-128 is a famous data mapping scenario

composed of 128 s-t TGDs, 39 target TGDs and 193 FDs with 150k

source instances; ONT-256 is a scenario composed of 256 s-t TGDs,

273 target TGDs and 923 FDs with 1m source instances. For STB-128

and ONT-256 we considered 20 CQs. Our benchmark also comprises

Doctors and DoctorsFD, two famous data integration tasks from

the schema mapping literature [56]. Doctors is composed of 5 s-t

TGDs, two EGDs involving more than one relation in the body and

8 FDs; DoctorsFD is composed of 5 s-t TGDs and 8 FDs. In both

scenarios we used source instances of 10k, 100k, 500k and 1m and

we considered 9 CQs. We remark that all the scenarios involve

harmless EGDs, in fact, as the reader can check [16], they all satisfy

the safe taintedness condition (Section 3.2). The execution times

include: (1) Load the dependencies from TXT file and the source

instance from CSV files; (2) Run the chase to generate the target

instance, evaluating chase time; (3) Evaluate query time. Step (3)

is straightforward in Llunatic and RDFox because these systems

adopt a materialization approach in which first the target instance

is computed and then the CQs are executed. Conversely, Vadalog

3985

adopts a comprehensive pipeline which is compiled from both Σ
and the rule 𝜌𝑄 , representing the CQ 𝑄 , and then executed. We

measured times in step (2) by removing 𝜌𝑄 from Σ before compiling

the pipeline; then, we stored into main memory the chase result

and, for step (3), we evaluated a simple pipeline compiled only

from 𝜌𝑄 . We repeated this process for every CQ of the setting and

averaged the elapsed times.

Scenarios Nodes Edges Nodes in the
largest WCC

Edges in the
largest WCC

Edge density in
the largest SCC

HEP-PH 12008 118521 11204 117649 10.5

HEP-TH 9877 25998 8638 24827 2.87

GR-QC 5242 14496 4158 13428 3.22

COND-MAT 23133 93497 21363 91342 4.27

ASTRO-PH 18772 198110 17903 197031 11

Figure 6: Statistics of the five collaboration graphs.

Discussion of the Results. Llunatic and RDFox implement the

chase under weakly acyclic sets of TGDs and apply the EGDs by

retrieving and deleting all the affected facts from thematerialized re-

lations, apply the EGDs over such facts and insert back the updated

facts. These operations require massive updates and are more ex-

pensive in an RDBMS-based than a RAM-based system [15]. These

systems typically interleave the application of TGDs and EGDs,

according to the standard chase procedure. As a result, multiple

massive updates caused by EGDs tend to hamper performance. In-

stead, Vadalog applies the EGDs only once, enforcing the equalities

between labelled nulls in a streaming fashion and storing them

into the equality structure. Then, it updates only the facts that

potentially contribute to the query answer. Results are reported as

2 groups of 3 charts each: Figures 4(d,e,f) show the average chase

time for the Doctors, DoctorsFD, and the iBench scenarios (STB-125

and ONT-256). In Vadalog, the execution of the CQs is just the

final part of the reasoning pipeline evaluation, and so the overall

elapsed time mostly benefits from an efficient implementation of

Σ. Figures 4(g,h,i) singles out the respective average query times,

which nevertheless confirm very competitive performance for CQs.

Regarding chase time, in the Doctors scenario, Llunatic is out-
performed by Vadalog and RDFox. RDFox is slightly faster than

Vadalog on smaller input, whereas Vadalog scales better on large

input (e.g., 500k and 1M facts). In DoctorsFD, Vadalog and RDFox

have a similar trend until 100k facts. For larger instances, Vadalog

outperforms both Llunatic and RDFox, while Llunatic behaves

better than RDFox. On STB-125 and ONT-256 Vadalog and RDFox

have a similar trend, with Vadalog being 2 and 3 seconds faster on

STB-125 and ONT-256, respectively. In general, Llunatic perfor-

mance is hampered by the cost of frequent I/O. As for query times,

Vadalog outperforms RDFox and Llunatic by 6 seconds in Doctors
and DoctorsFD. For the iBench scenarios, the times are similar to

RDFox and slightly better than Llunatic.

5.3 Graph Traversals Comparison
We show how inherently recursive cases, like graph traversals, can

be modeled with non-recursive TGDs thanks to harmless EGDs.

We select again the UST-CONN problem and experiment three

approaches to assess connectivity (Figure 5): (i) labelled null unifi-

cation power of the EGDs in Vadalog, (ii) Datalog transitive closure

in Vadalog, and (iii) Regular Path Queries (RPQs) in Neo4J.

Description of the Scenarios.We generated two graph topolo-

gies, the first with a single connected component (Figure 4(l)), the

second with multi-connected components (Figure 4(m)). We test

the approaches over four sparse graphs of the same topology with

increasing sizes (1k, 2k, 5k, 10k nodes).

Discussion of the Results. Figure 4(l) and Figure 4(m) show that

the harmless EGDs trend is sublinear. The recursive approach is

outperformed by the EGDs technique. In fact, EGDs do not need all

the previously derived facts, but can rely on a single join operation

between the Conn relation and on the unification power of labelled

nulls. Neo4j is outperformed by both recursion and EGD approaches,

due to the inability of that system to deal with high number of

source and target nodes in traversals based on adjacency lists [64].

5.4 Validation on Real-World Scenarios
The goal of this section is twofold: on one hand, we focus on real-

world scenarios, with special attention to the recursive ones, that

can be modeled with harmless EGDs, while being impossible or

laborious to capture and inefficient to evaluate with the mere use of

TGDs; on the other, we validate our EGD architecture by comparing

the Vadalog system against ad-hoc implementations.

For the ad-hoc implementations, we adopt a materialization ap-

proach based on SQLite [46], and the graph libraries networkX [45].

We name such implementations SQLite-networkX (SQL-NX)
1
. Es-

sentially, we used a SQL script that materializes the predicates cre-

ated by the TGD applications and incrementally updates them to

perform the EGD chase steps. Unification is executed with the equal-

ity graph approach (see Section 4.1), implemented with NetworkX

algorithms. We use an in-memory and on-disk SQLite instance.

We now introduce four reasoning scenarios for real-world settings

where harmless EGDs are effectively applicable.

Scenario 1: UST-CONN. We consider the UST-CONN problem

(Example 4.1). We select as input five real-world public graphs of

collaboration networks in the scientific domain [52], all having a

huge connected component. Figure 6 details the five datasets and

Figures 4(c,o,p) show the results of the experiments.

Scenario 2: Graph Bipartition. In the context of online platforms,

we want to study the interactions between the involved domain

entities, to check that specific integrity constraints are satisfied.

Specifically, in the dataset about the popular MOOC online plat-

form [48], the interactions between users and courses are modeled

as a connected graph, where the nodes represent users or courses

and the edges are the actions (for example “enrolment”).

Example 5.1. The aim of the setting is checking the integrity con-
straints that enforce that actions are always taken by users and regard
courses. This is the same as checking that the graph is bipartite.

UserOrCourse(𝑥) → ∃𝑦 Part(𝑥,𝑦) (𝜎1)

Part(𝑥, 𝑧1),Action(𝑥,𝑤),Action(𝑤,𝑦), Part(𝑦, 𝑧2) → 𝑧1 = 𝑧2 (𝜂)

The EGD 𝜂 merges the partitions, initially one for each node (𝜎), that
are linked by a sequence of two actions.

q← Part(𝑥, 𝑧),Action(𝑥,𝑦), Part(𝑦, 𝑧) (𝑄)

Finally, 𝑄 checks whether the graph is bipartite (𝑞 evaluates to false).

1
The SQL-NX tool is available at https://github.com/Davben93/egd-experiments

3986

For the tests, we considered connected subgraphs of growing size

(Figure 4(r)) and measured the elapsed reasoning time.

Scenario 3: Clique Percolation. A popular technique to detect

communities in social network graphs is the clique percolation

method [60]. It builds communities from 𝑘-cliques (for simplicity,

we will adopt 𝑘=3). Two k-cliques are considered adjacent if they

share 𝑘-1 nodes. A community is defined as the maximal union of

𝑘-cliques that are mutually reachable via adjacent 𝑘-cliques.

Example 5.2. The goal of the setting is finding all the pairs of
friends in the same community, considering a portion of the Facebook
friendship network [55].

Edge(𝑥,𝑦), Edge(𝑦, 𝑧), Edge(𝑧, 𝑥) → ∃𝑐 Clique(𝑐, 𝑥,𝑦, 𝑧) (𝜎1)

Clique(𝑐, 𝑥,𝑦, 𝑧) → Community(𝑐, 𝑥),Community(𝑐,𝑦),
Community(𝑐, 𝑧) (𝜎2)

Clique(𝑐1, 𝑥,𝑦, _),Clique(𝑐2, 𝑥,𝑦, _) → 𝑐1 = 𝑐2 (𝜂1)

Clique(𝑐1, _, 𝑥,𝑦),Clique(𝑐2, _, 𝑥,𝑦) → 𝑐1 = 𝑐2 (𝜂2)

Clique(𝑐1, 𝑥, _, 𝑦),Clique(𝑐2, 𝑥, _, 𝑦) → 𝑐1 = 𝑐2 (𝜂3)

Each clique of friends is identified and assigned to a different label
representing a community (𝜎1). We extract people and their corre-
sponding communities (𝜎2). Two communities are merged whenever
two cliques of friends are adjacent (𝜂1, 𝜂2, 𝜂3).

q(𝑥,𝑦) ← Community(𝑧, 𝑥),Community(𝑧,𝑦) (𝑄)

Finally, 𝑄 extracts the pairs of friends in the same community.

We considered subnetworks of increasing size (Figure 4(s)).

Scenario 4: Multi-criteria Clustering. We consider the graph

of the Italian companies used by the Bank of Italy to solve many

financial tasks such as analysis of company control, prevention of

company takeovers, and anti-money laundering [44]. The graph

contains data about person-company and company-company share-

holding relationships, counting 6.977M nodes and 6.252M edges.

Example 5.3. We want to cluster individuals according to multiple
alternative criteria such as: being Persons of Significant Control (PSC)
of the same company; being PSCs of a company related by a control
relationship; being PSCs of companies of the same corporate group.

Person(𝑝),Own(𝑝, 𝑐,𝑤),𝑤 > 0.25→ PSC(𝑝, 𝑐) (𝜎1)

PSC(𝑝, 𝑐) → ∃𝑔KP(𝑝, 𝑐, 𝑔) (𝜎2)

KP(_, 𝑐, 𝑔1),KP(_, 𝑐, 𝑔2) → 𝑔1 = 𝑔2 (𝜂1)

KP(_, 𝑐1, 𝑔1),Control(𝑐1, 𝑐2),KP(_, 𝑐2, 𝑔2) → 𝑔1 = 𝑔2 (𝜂2)

KP(_, 𝑐1, 𝑔1),CG(𝑐1, 𝑐2),KP(_, 𝑐2, 𝑔2) → 𝑔1 = 𝑔2 (𝜂3)

A shareholder p is a PSC of a company c if she owns more than 25% of
the shares of c (𝜎1). Every PSC is a key person for a group of companies
g (𝜎2). Key persons of the same company are assigned to the same
group (𝜂1). If a company c1 controls a company c2, then their key
persons are in the same group (𝜂2). If c1 and c2 are companies of the
same corporate group (CG), they share the same key persons (𝜂3).

q(𝑐1, 𝑐2) ← KP(𝑝1, 𝑐1, 𝑔),KP(𝑝1, 𝑐2, 𝑔), 𝑝1 ≠ 𝑝2 (𝑄1)

q(𝑝1, 𝑝2) ← KP(𝑝1, _, 𝑔),KP(𝑝2, _, 𝑔), 𝑝1 ≠ 𝑝2 (𝑄2)

The CQ 𝑄1 computes the pair of companies which share the same
group of key persons. Conversely, the CQ 𝑄2 identifies the linked key
persons, those who are part of the same group of companies.

Our experiments consider an increasing size for KP (Figure 4(t)).

Discussion of the Results. As illustrated in Figure 4, Vadalog

outperforms SQL-NX in all the scenarios. This is motivated by the

ability of Vadalog to perform the basic operations (selection, join,

handling existentials, enforcing equalities) in a streaming pipeline.

5.5 Comparison between Equality Structures
As shown by Figure 4(n), in the same settings of Scenario 1 in

Section 5.4, the graph-based equality structure (Section 4.1) outper-

forms the hash-based one in terms of execution time as the input

size grows. In particular, for HEP-PH and ASTRO-PH, the graph-
based structure wins by two orders of magnitude. In fact, the hash

equality structure requires frequent rearrangements to preserve

the actual value for each new labelled null. On the other hand, it is

efficient in terms of memory footprint (Figure 4(q)).

6 RELATEDWORK
Most of the work on decidable variants of Datalog [6, 7, 24, 26, 30]

that have been investigated only considers existential rules with-

out equality constraints, also in the case of general notions like

model-faithful acyclicity (MFA) [43]. General results have been

achieved by axiomatization approaches such as singulatisation [54],

not efficient in practice, or with equality-MFA [33], however, with-

out simple sufficient conditions to detect non-termination. In the

Datalog
±
context, there have been attempts to introduce restric-

tions to EGDs [25, 28, 32]. An initial intuition is that of innocuous
EGDs [24], which enjoy the property that query answering is in-

sensitive to them, provided that the chase does not fail. Given a

set Σ = Σ𝑇 ∪ Σ𝐸 , a chase application can simply ignore Σ𝐸 , with
the guarantee that all the facts needed for query answering will be

entailed. This property, which is semantic and cannot be syntacti-

cally checked, is of scarce practical utility, as the adopted EGDs do

not add expressive power to the TGDs. A more interesting notion

is that of separable EGDs [23], which we have discussed at length.

This concept was originally introduced in the context of inclusion

dependencies and key dependencies [2], and has been reformulated

under the notion of EGD-stability [23]: a set of TGDs and EGDs Σ
is EGD-stable if, for every instance 𝐷 , if 𝐷 satisfies Σ𝐸 , then the

chase of 𝐷 under Σ does not fail.

7 CONCLUSION
We introduced and implemented a new class of EGDs that can non-

trivially interact with warded TGDs, without affecting decidability

or tractability of the Warded fragment. The interplay of Warded

Datalog
±
with harmless EGDs captures many practical tasks. Look-

ing at extensions, in principle it seems possible to overcome the

syntactic limitation of our fragment, namely, the inhibition to join

variables affected by EGDs when they possibly bind to labelled

nulls. However, for such an expanded fragment to be meaningful,

it should be used in conjunction with TGDs where harmful joins

are incorporated, beyond being mere syntactic sugar, like in the

case of warded TGDs. That would likely require to give up at least

PTIME data complexity, if at all possible, thus with limited practical

applicability. Our studies will pursue such an investigation.

ACKNOWLEDGMENTS
The work on this paper was partially supported by the Vienna

Science and Technology Fund (WWTF) grant VRG18-013.

3987

REFERENCES
[1] 2022. The Neo4j Graph Data Science Library Manual v1.8. http://shorturl.at/

goprs [Online; 21-Sep-2022].

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley.

[3] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles

Rackoff. 1979. Random walks, universal traversal sequences, and the complexity

of maze problems. In 20th Annual Symp. on Foundations of Computer Science.
218–223.

[4] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In SIGMOD. 1371–1382.
[5] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The

IBench Integration Metadata Generator. VLDB 9, 3 (2015), 108–119.

[6] Jean-François Baget, Michel Leclère, and Marie-Laure Mugnier. 2010. Walking

the Decidability Line for Rules with Existential Variables. In KR.
[7] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël

Thomazo. 2011. Walking the Complexity Lines for Generalized Guarded Existen-

tial Rules. In IJCAI.
[8] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML.
[9] Teodoro Baldazzi, Luigi Bellomarini, Emanuel Sallinger, and Paolo Atzeni. 2021.

EliminatingHarmful Joins inWardedDatalog+/-. In International Joint Conference
on Rules and Reasoning. Springer, 267–275.

[10] Teodoro Baldazzi, Luigi Bellomarini, Emanuel Sallinger, and Paolo Atzeni. 2022.

A Versatile Generator to Benchmark Warded Datalog+/- Reasoning (to appear).

In RuleML+RR (Lecture Notes in Computer Science). Springer.
[11] Pablo Barceló and Reinhard Pichler (Eds.). 2012. Datalog in Academia and Industry.

LNCS, Vol. 7494. Springer.

[12] Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, and Emanuel Sallinger.

2022. Tech. Appendix. http://shorturl.at/agij2 [Online; 21-Sep-2022].

[13] Luigi Bellomarini, Davide Benedetto, Georg Gottlob, and Emanuel Sallinger. 2020.

Vadalog: A modern architecture for automated reasoning with large knowledge

graphs. Information Systems (2020), 101528.
[14] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog

System: Datalog-based Reasoning for Knowledge Graphs. PVLDB 11, 9 (2018),

975–987.

[15] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,

Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. Benchmarking

the Chase. In PODS. 37–52.
[16] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,

Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. ChaseBench.

https://github.com/dbunibas/chasebench. [Online; 21-Sep-2022].

[17] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. 2014. PDQ: Proof-

Driven Query Answering over Web-Based Data. VLDB 7, 13 (2014), 1553–1556.

[18] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. 2015. Querying with

Access Patterns and Integrity Constraints. VLDB 8, 6 (feb 2015), 690–701.

[19] Michael Benedikt, BorisMotik, and Efthymia Tsamoura. 2018. Goal-DrivenQuery

Answering for Existential Rules with Equality. In AAAI. Article 215, 10 pages.
[20] Jens Bleiholder and Felix Naumann. 2009. Data fusion. ACM computing surveys

(CSUR) 41, 1 (2009), 1–41.
[21] Angela Bonifati, Ioana Ileana, and Michele Linardi. 2016. Functional Dependen-

cies Unleashed for Scalable Data Exchange. In SSDBM. Article 2, 12 pages.

[22] Max Bramer. 2007. Clustering. Springer.
[23] Andrea Calì, Marco Console, and Riccardo Frosini. 2013. Deep Separability of

Ontological Constraints. CoRR abs/1312.5914 (2013).

[24] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase:

Query Answering under Expressive Relational Constraints. J. Artif. Intell. Res.
48 (2013), 115–174.

[25] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-

based framework for tractable query answering over ontologies. In PODS. 77–86.
[26] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas

Pieris. 2010. Datalog+/-: A Family of Logical Knowledge Representation and

Query Languages for New Applications. In LICS. 228–242.
[27] Andrea Calì, Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2012. On the

Interaction of Existential Rules and Equality Constraints in Ontology Querying.
Springer-Verlag, Berlin, Heidelberg, 117–133.

[28] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2010. Advanced Processing for

Ontological Queries. Proc. VLDB Endow. 3, 1 (2010), 554–565.
[29] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Ontological query an-

swering under expressive Entity–Relationship schemata. Information Systems
37, 4 (2012), 320–335.

[30] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive

ontology languages: The query answering problem. Artificial Intelligence 193
(2012), 87–128.

[31] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. On the Decidability

and Complexity of QueryAnswering over Inconsistent and Incomplete Databases.

In SIGMOD. 260–271.
[32] Andrea Calì and Andreas Pieris. 2011. On Equality-Generating Dependencies in

Ontology Querying - Preliminary Report. In AMW, Vol. 749. CEUR-WS.org.

[33] David Carral and Jacopo Urbani. 2020. Checking Chase Termination over On-

tologies of Existential Rules with Equality. In AAAI. AAAI Press, 2758–2765.
[34] Ashok Chandra and Moshe Vardi. 1985. The Implication Problem for Functional

and Inclusion Dependencies is Undecidable. SIAM J. Comput. 14 (1985), 671–677.
[35] Alin Deutsch, Alan Nash, and Jeff Remmel. 2008. The Chase Revisited. In SIGMOD.

149–158.

[36] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data

exchange: semantics and query answering. Theoretical Computer Science 336, 1
(2005), 89–124.

[37] Ivan P Fellegi and Alan B Sunter. 1969. A theory for record linkage. J. Amer.
Statist. Assoc. 64, 328 (1969), 1183–1210.

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education.

[39] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2014.

Mapping and cleaning. In ICDE. 232–243.
[40] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2014.

That’s All Folks! LLUNATIC Goes Open Source. PVLDB 7, 13 (2014), 1565–1568.

[41] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL

Entailment Regime: Rules to the Rescue. In IJCAI. 2999–3007.
[42] Goetz Graefe and William J McKenna. 1993. The volcano optimizer generator:

Extensibility and efficient search. In ICDE. 209–218.
[43] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, De-

spoina Magka, Boris Motik, and Zhe Wang. 2013. Acyclicity Notions for Exis-

tential Rules and Their Application to Query Answering in Ontologies. J. Artif.
Intell. Res. 47 (2013), 741–808.

[44] Andrea Gulino, Stefano Ceri, Georg Gottlob, Emanuel Sallinger, and Luigi Bel-

lomarini. 2021. Distributed Company Control in Company Shareholding Graphs.

In ICDE. IEEE, 2637–2648.
[45] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network

Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman

(Eds.). Pasadena, CA USA, 11 – 15.

[46] Richard D Hipp. 2020. SQLite. http://shorturl.at/cemJV [Online; 21-Sep-2022].

[47] Richard Hull and Masatoshi Yoshikawa. 1990. ILOG: Declarative Creation and

Manipulation of Object Identifiers. In VLDB. 455–468.
[48] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic

Embedding Trajectory in Temporal Interaction Networks. In SIGKKD. ACM.

[49] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2012.

Efficiently Computable 𝐷𝑎𝑡𝑎𝑙𝑜𝑔∃ Programs. In KR (Rome, Italy). 13–23.

[50] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2019.

Fast Query Answering over Existential Rules. ACM Trans. Comput. Logic 20, 2,
Article 12 (2019).

[51] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,

Simona Perri, and Francesco Scarcello. 2006. The DLV System for Knowledge

Representation and Reasoning. ACMTrans. Comput. Logic 7, 3 (jul 2006), 499–562.
[52] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution:

Densification and Shrinking Diameters. 1, 1 (2007).

[53] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Implica-

tions of Data Dependencies. ACM Tran. on DB Systems 4, 4 (1979), 455–468.
[54] Bruno Marnette. 2009. Generalized schema-mappings: from termination to

tractability. In PODS. ACM, 13–22.

[55] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles

in Ego Networks. In NIPS. 548–556.
[56] Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2014. IQ-METER-an

evaluation tool for data-transformation systems. In ICDE. 1218–1221.
[57] Mostafa Milani and Leopoldo E. Bertossi. 2016. Extending Weakly-Sticky

Datalog
±
: Query-Answering Tractability and Optimizations. In RR (Lecture

Notes in Computer Science), Vol. 9898. Springer, 128–143.
[58] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. 2014.

Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF

Systems. In AAAI. 129–137.
[59] Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. 2016.

Datalography: Scaling datalog graph analytics on graph processing systems. In

BigData. IEEE, 56–65.
[60] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

Nature 435, 7043 (2005), 814–818.
[61] Reinhard Pichler and Vadim Savenkov. 2009. DEMo: Data Exchange Modeling

Tool. VLDB 2, 2 (2009), 1606–1609.

[62] Omer Reingold. 2005. Undirected ST-connectivity in log-space. Electronic Collo-
quium on Computational Complexity - ECCC, 376–385.

[63] Victor Vianu. 2021. Datalog Unchained. In PODS. ACM, 57–69.

[64] Jim Webber, Emil Eifrem, and Ian Robinson. 2013. Graph databases. O’Reilly
Media, Incorporated.

3988

http://shorturl.at/goprs
http://shorturl.at/goprs
http://shorturl.at/agij2
https://github.com/dbunibas/chasebench
http://shorturl.at/cemJV

