
UPLIFT: Parallelization Strategies for Feature Transformations
in Machine Learning Workloads

Arnab Phani
Graz University of Technology

phaniarnab@gmail.com

Lukas Erlbacher
Graz University of Technology

lukas.erlbacher@student.tugraz.at

Matthias Boehm
Graz University of Technology

m.boehm@tugraz.at

ABSTRACT

Data science pipelines are typically exploratory. An integral task
of such pipelines are feature transformations, which transform raw
data into numerical matrices or tensors for training or scoring.
There exist a wide variety of transformations for different data
modalities. These feature transformations incur large computa-
tional overhead due to expensive string processing and dictionary
creation. Existing ML systems address this overhead by static par-
allelization schemes and interleaving transformations with model
training. These approaches show good performance improvements
for simple transformations, but struggle to handle different data
characteristics (many features/distinct items) and multi-pass trans-
formations. A key observation is that good parallelization strategies
for feature transformations depend on data characteristics. In this
paper, we introduce UPLIFT, a framework for ParalleLIzing Feature
T ransformations. UPLIFT constructs a fine-grained task graph for
a set of transformations, optimizes the plan according to data char-
acteristics, and executes this plan in a cache-conscious manner. We
show that the resulting framework is applicable to a wide range
of transformations. Furthermore, we propose the FTBench bench-
mark with transformations and datasets from various domains. On
this benchmark, UPLIFT yields speedups of up to 31.6x (9.27x on
average) compared to state-of-the-art ML systems.

PVLDB Reference Format:

Arnab Phani, Lukas Erlbacher, and Matthias Boehm. UPLIFT:
Parallelization Strategies for Feature Transformations in Machine Learning
Workloads. PVLDB, 15(11): 2929 - 2938, 2022.
doi:10.14778/3551793.3551842

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/damslab/reproducibility (in the folder UPLIFT).

1 INTRODUCTION

Machine Learning (ML) is the foundation of many data-driven ap-
plications, which increasingly utilize multi-modal data comprised
of structured attributes, images, speech, video, graphs, and text
[70, 109]. Data scientists apply various techniques for transforming
the raw data into a form suitable for model training and scoring.
Common transformations include encoding numerical columns us-
ing normalization and binning; encoding categorical columns using

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551842

recoding (dictionary encoding), dummy coding (one-hot encoding),
and feature hashing; as well as vector embeddings for text or graphs.
These transformations exhibit different runtime and accuracy char-
acteristics. The variety of data and transformations requires practi-
tioners to explore alternative transformations.While prior work has
focused on runtime improvements for pre-processing and model
training, feature transformations have received much less attention.

Challenges of Feature Transformations: Feature transforma-
tions are typically applied in two phases: (1) A build phase obtains
the necessary metadata such as a dictionary of distinct items, and
(2) an apply phase uses those dictionaries to transform the data
and combine the feature outputs. This multi-pass nature and poten-
tially many or large dictionaries can render simple, data-parallel
execution ineffective. Major challenges include (1) a large num-
ber of output columns, (2) many distinct items per column (up
to millions [114]), (3) sparsity and cardinality skew, (4) expensive
string processing (e.g., hashing and parsing), (5) ultra-sparse out-
puts, (6) larger-than-memory output data (e.g., due to replicated
embeddings), and (7) a wide diversity of transformations.

Feature Transformations in ML Systems: Many end-to-end
ML systems and libraries—including TensorFlow TFX [11, 12],
MLFlow [119], Sagemaker [62], MLlib/spark.ml [67], Scikit-learn
[76], ML.NET [6], and SystemDS [14, 15]—provide native support
for data pre-processing and feature transformations. These sys-
tems address the large overhead of feature transformations with
techniques such as caching and reuse [24, 79, 113] to avoid redun-
dant pre-processing operations, interleaving single-pass, element-
wise transformations with data loading [72], parallelizing inde-
pendent column transformations [1], and static data parallelism
[6, 67, 72, 76]. However, to the best of our knowledge, no prior
work offers a principled approach to efficiently execute feature
transformation workloads according to their data characteristics.

UPLIFT Framework Overview: For executing a feature trans-
formation workload efficiently, we aim to exploit the available par-
allelism and cache-conscious runtime operations. Given a dataset
with known characteristics, our UPLIFT framework constructs an
execution plan with the goal of minimizing compute time. Inspired
by task and operator scheduling in Ray [71] and TensorFlow [3], we
construct a fine-grained task-dependency graph for the different
phases of all column encoders. A rule-based optimizer then rewrites
the task graph according to data, hardware, and operation charac-
teristics, and submits it for concurrent execution. Similar to vec-
torized query execution [18] and fused operator pipelines [16], we
devise cache-conscious runtime techniques, and fine-grained data-
parallelism on row partitions, while satisfying memory constraints.
Applying these ideas to feature transformation workloads—with an
optimizer that exploits the known and estimated properties of these
transformations—yields a clean and very effective framework.

2929

https://doi.org/10.14778/3551793.3551842
https://github.com/damslab/reproducibility
https://github.com/damslab/reproducibility/tree/master/vldb2022-UPLIFT-p2528
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551842
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Contributions: Our main contributions are the UPLIFT frame-
work for efficient feature transformations, and a dedicated feature
transformation benchmark. UPLIFT is fully integrated in Apache
SystemDS1 [15] as a representative ML system with local, dis-
tributed, and federated backends. Our technical contributions are:

• Background: We survey commonly used feature transfor-
mations, existing libraries, user APIs, as well as existing
parallelization strategies and optimizations in Section 2.

• UPLIFT System Architecture: We then discuss the overall
architecture of UPLIFT with different task types, transfor-
mations, and different parallelization strategies in Section 3.

• FTBench Benchmark: As a basis for our evaluation, we
define a new benchmark for feature transformations, FT-
Bench, covering a realistic mix of data characteristics, fea-
ture types, and combination of transformations in Section 4.

• Experiments: Finally, we report on extensive experiments
in Section 5. We show that UPLIFT significantly improves
performance compared to baselines such as SystemDS-Base,
TensorFlow [3], spark.ml [67], Scikit-learn [76], and others.

2 BACKGROUND AND PRELIMINARIES

In this section, we discuss commonly used feature transformations
for various types of data, different implementations, APIs and con-
figurations, as well as existing optimization techniques.

2.1 Feature Transformations

Feature transformation is a part of feature engineering and scales,
modifies, or converts features before numerical computations. Fea-
ture transformations are often placed after cleaning and either
before or within the training part of an ML pipeline. During model
training, we transform the entire dataset and obtain its metadata.
During scoring, this metadata is then used for consistent batch-
or mini-batch transformations. Transforming the entire dataset
exhibits more parallelization opportunities, whereas batch-wise
transformations allow overlapping data loading, transforming, and
training/scoring [72]. In the following, we categorize the trans-
formations based on the data modalities. Table 1 summarizes the
following commonly applied transformations for structured data,
which are part of most data science pipelines [81, 114]:

Numerical Transformations: These transformations are used
on numeric features. Examples include simple aggregations (min,
max, mean) or scaling, normalization, and binning (discretization).
Normalization brings numeric features to a standard scale via meth-
ods such as scale&shift, min/max-scaling, log-scaling, or Z-scoring
for well-behaved training. Binning maps continuous features into
discrete categories (integers), with fixed-size bin boundaries (equi-
width), or equal frequency per bin and thus, variable boundaries
(equi-height). Normalization and binning require multiple passes:
a first pass (build) computes statistics (e.g. min/max, quantiles),
and a second pass (apply) uses those statistics to transform the
data. While parallelizing the apply phase is straightforward, a data-
parallel build requires parallel collection and merging of the partial
statistics. Pass-through encoders forward numerical data with op-
tional conversion (*) of value types (e.g., strings) where needed.

1The source code is available at https://github.com/apache/systemds, specifically in
the package src/main/java/org/apache/sysds/runtime/transform.

Table 1: Common Multi-pass Transformations.

Transformation Build Input Build Output Apply Output

Recoding Nominal Dictionaries Integer
Feature Hashing Nominal None Integer

Binning Numeric* Bin boundaries Integer
Pass-through Numeric* None Numeric

Dummy-coding Integer Offsets Sparse vectors

Categorical Transformations: Common techniques for en-
coding categories are recoding, dummy-coding (one-hot encoding),
and feature hashing. Recoding and feature hashing transform a cat-
egorical feature into a contiguous integer domain. Dummy-coding
often follows binning, recoding, or feature hashing and transforms
integers into sparse binary vectors with a 1 at the given position.
These sparse output vectors require consolidating output column
offsets. A recoding-build phase constructs a dictionary to map dis-
tinct values to integer codes (and optionally their frequency). The
apply phase then uses the maps for transforming the given data.
Feature hashing is less expensive (no dictionaries) and allows ad-
justing the output dimensions via domain size 𝑘 . A data-parallel
build phase requires managing partial hash-maps and merging.

Modality-specific Transformations: Besides the common
transformations, modern ML systems provide high-level utilities
for encoding data modalities like text and images. Two commonly
used feature transformations for text are Bag of N-grams (Bag of
Words) [81], and (word) embeddings [25, 68]. A Bag of N-grams
representation tokenizes text, represents each n-gram (sequence
of n tokens) by an integer ID, and counts the n-gram occurrences
per sentence or document (potentially weighted by tf-idf). Another
widely used transformations for text (and graphs) are embeddings,
which map distinct tokens to numerical vectors. These embeddings
are trained on data from the target domain. In contrast to text,
images are stored as N-D tensors with multiple channels per pixel.
Common image manipulations such as cropping, rotating, and ad-
justing brightness or contrast perform numerical transformations.

2.2 Implementations and Configurations

ExistingML systems provide built-in support for feature transforma-
tions, but with major differences in their user APIs, configurations,
metadata management, and optimization techniques. In this section,
we survey feature transformations in popular systems.

User APIs: In terms of the user APIs and metadata handling
(e.g., dictionaries), we see two approaches. First, Scikit-learn [19, 94],
Spark MLlib [99], and Keras pre-processing [51] expose separate
APIs for build and apply (e.g. fit and transform). They em-
bed the metadata inside the encoder objects and allow access via
class attributes (e.g. categories_ [93]). Users employ these ob-
jects to apply the encoders on unseen data. Second, TensorFlow
(feature_column module [103]) and SystemDS [100] use a single
API to transform an input dataset and manage the metadata in
a stateless manner. For instance, SystemDS’s transformencode
[100] returns the metadata as a frame (allowing post-processing)
and it provides a separate function, transformapply [100] to en-
code unseen data. Additionally, these frameworks provide methods
to assemble multiple transformations for an entire dataset, either
by pipelining (e.g. Scikit-learn, MLlib) or by a single API call with

2930

https://github.com/apache/systemds
https://github.com/apache/systemds/tree/main/src/main/java/org/apache/sysds/runtime/transform


a transform specification (e.g., SystemDS, TFX). Combining multi-
ple transformations in a single pipeline creates optimization and
parallelization opportunities, irrespective of the user API.

Configurations: All libraries provide certain tuning parameters
to govern the encoded values and handle errors. First, common
transformations might be fused into a single API call (e.g., Scikit-
learn’s KBinsDiscretizer [92] fuses binning and dummy-coding).
Second, recoded values might be ordered alphabetical or by fre-
quency. Third, users might provide fixed dictionaries (e.g., Keras
StringLookup [104] vocabulary input). Fourth, common tech-
niques to handle unknown categories include explicit exceptions,
ignoring respective rows, and representing unknown or infrequent
values as a NaN value or single overflow category.

Optimizations: Common parallelization strategies for feature
transformations in ML systems include (1) parallel execution of
feature encoders (column groups), (2) parallel execution on row
partitions, and (3) pipelining of transformations and subsequent
operator pipelines. First, Scikit-learn parallelizes feature transfor-
mations via Joblib [1] (Python’s process-based parallelism) with
one encoder per process. Second, Spark Mllib [67] and ML.NET [6]
parallelize over row partitions or row cursors. Similarly, TensorFlow
tf.data [38, 72] executes user-defined functions (UDFs) on data
partitions in parallel, but without built-in support for feature trans-
formations. Scikit-learn with Dask [23, 87] and Ray [71] backends
as well as MLlib further execute distributed, data-parallel trans-
formations on row partitions. Third, the TensorFlow dataset API
enables overlapping data loading, transformations, and training via
explicit mini-batch prefetching. Recently, NVIDIA RAPIDS [83] and
DALI [40] introduced pre-processing on GPUs, which is challenging
for irregular transformations of strings and sparse outputs. Overall,
these strategies yield good runtime for simple transformations but
are suboptimal for complex, multi-pass transformation workflows,
and challenging data characteristics (many features/distinct items).

3 UPLIFT SYSTEM ARCHITECTURE

Our UPLIFT framework underpins specific transform built-in func-
tions, which take a data frame and transform specification (JSON
configuration) as input, and optimize and execute the transforma-
tions according to data characteristics. Inspired by future-based
parallelization schemes [71] and query processing in column stores,
UPLIFT creates and optimizes fine-grained task graphs as shown
in Figure 1. In this section, we describe the task types, construction
of task graphs, and their rule-based optimization in detail.

3.1 Task Types

We parse the transform specification, and create general and
encoder-specific tasks. Unspecified features are handled by pass-
through encoders, which casts those features to floating point.

Build: A build task scans an assigned feature of the input data
frame and creates the necessary metadata. For recoding, this meta-
data is a dictionary of distinct items. In contrast, the binning meta-
data is an array of bin boundaries. For equi-width, we find the
minimum and maximum values and arithmetically derive the bin
boundaries. For equi-height, we sort the values and derive the bin
boundaries from quantiles by position. Feature hashing and pass-
through encoders do not collect metadata.

Build 
Bin

Build 
Bin

Build
 RC

Build
 RC

Alloc 
output

Apply 
Bin

Apply 
DC

Get 
meta

Apply 
Bin

Apply 
DC

Get 
meta

Alloc 
meta

Com-
pact

Apply 
RC

Apply 
RC

Apply 
DC

Apply 
DC

Figure 1: Task Graph for Adult Dataset.

Output Allocation: An output allocation task creates and allo-
cates the output matrix. This upfront allocation allows the apply
tasks to concurrently fill the output matrix. We determine the upper
bound of the number of non-zero values and accordingly allocate a
dense or sparse CSR (compressed sparse rows) matrix. For a CSR
matrix, we already fill the row pointers and column indexes during
allocation to avoid shifting and contention during concurrent apply.

Metadata Allocation: A metadata allocation task creates and
allocates a frame for materializing all encoder’s meta data. The di-
mensions of the metadata frame are the maximum metadata length
(#distinct values, #bins) × #input-features. Pre-allocation allows
again concurrent column-wise, metadata collection.

Apply: An apply task reads a feature from the input frame,
encodes it using the metadata, and writes the encoded values into
the output matrix. For cache-conscious operations from column-
oriented frames to row-oriented matrices, we perform the apply
task in a block-wisemanner. According to output characteristics, we
create dense or sparse apply tasks. Sparse tasks modify the indexes
and values of a sparse, pre-allocated matrix in place. Recoding,
binning and feature hashing insert into the first column of the
output domain. A dummycode apply-task then converts the integer
column of domain N into N binary codes. A pass-through apply-task
parses inputs to floating-point values if necessary.

UDF Apply: For flexible transformation workflows, we further
support UDF apply tasks. These UDFs are linear-algebra built-in or
user functions called on columns. Internally, we extract the features,
utilize eval function mechanisms to load, compile, and execute the
UDFs, and write back the results. Examples include normalizing a
subset of features, specific embedding strategies, and data cleaning
primitives. This design enables reusing DSL-based built-in functions
and system infrastructure for rewrites, code generation, and HW
accelerators. However, the runtime compilation hinders estimating
the output sparsity and thus, we allocate a dense output for UDFs.

Sparse Row Compaction: Missing values might be encoded
as zeros, which leads to zeros in the sparse outputs after apply. A
compaction task compacts sparse rows in-place by removing the
zeros, shifting the non-zero entries, and updating offsets. We track
the row indexes having zeros and compact only those rows.

Metadata Collection: A metadata collection task serializes the
metadata—in an input-feature-aligned manner—into a frame.

3.2 Task-graph Construction

After splitting the transform specification into tasks, we consolidate
all the tasks into a task-graph G—which represents the paralleliza-
tion strategy (execution plan). Later we submit this task-graph,

2931



whose nodes are futures, to a ForkJoinPool, where tasks with
ready inputs are amenable for execution (similar to TensorFlow’s
executor [3]). In addition to an array of tasks, we maintain an aux-
iliary map that incorporates the dependencies. The optimization
objective of the task-graph construction is to minimize compute
time (𝐶 (G)) under a given memory constraint (max𝑀 (G) ≤ 𝑀𝐵 ).

min 𝐶 (G) s.t. max(𝑀 (G)) ≤ 𝑀𝐵 (1)

Figure 1 shows the initial task-graph for the transformation of a
subset of features of the Adult dataset. We perform binning (Bin) for
numerical and recoding (RC) for categorical columns, both followed
by dummy-coding (DC). Arrows represent task dependencies and
independent tasks can execute concurrently. We start with feature-
wise build tasks, followed by output and metadata allocation tasks.
Subsequently, we schedule the apply-tasks. Similarly, metadata
collection tasks wait for metadata allocation (and thus, the build
tasks). Finally, we have the compaction task of the sparse output.

3.3 Rule-based Optimizer

After constructing the global task-graph, we pass it through an
optimizer. The optimizer first collects a uniform sample of rows to
estimates the number of distinct items [41] andmemory usage of the
parallel tasks. Based on the memory estimates, data characteristics,
and transform spec, the optimizer then rewrites the task-graph
by updating the task array and the dependency map. Maintaining
the dependencies in a single map simplifies new rewrites. Our
current rewrites aim to reduce costs by eliminating synchronization
bottlenecks, and better exploiting the available parallelism.

Reduce Bottlenecks: We scan the dependency map to remove
unnecessary synchronization barriers. Examples include concurrent
build, output allocation and metadata allocation tasks if the output
dimensions are known prior to the build tasks (e.g. #bins).

Row Partitioning: Figure 1 shows column-wise build and apply
tasks. Column-oriented task partitioning fails to fully utilize all
cores if the input has fewer features than available cores, and if the
compute time is skewed across columns (varying #distinct items,
expensive pass-through casts). To exploit the available parallelism
better, we additionally partition a column into multiple row-ranges
and assign a task to each block of rows. For recoding, build tasks
maintain private hash-maps, and a new merge task combines the
partial maps via a union distinct (and aggregates). Similarly, for
equi-width binning, every task finds the minimum and maximum
values in the assigned partition. A merge task later derives the
global aggregates from the partial values. For equi-height binning,
each build task sorts a partition (run), which are later merged.

Number of Partitions: Depending on the number of distinct
values and string sizes, increasing the number of row partitions
(tasks operating on row ranges) increases memory overhead due
private maps with overlap. We utilize a sample-based estimator
[29, 41] for estimating the number of distinct items 𝑑 ("generalized
jackknife" estimator w.r.t. variability of frequencies), but scan-based
estimators like KMV [13] andHyperLogLog [33, 44] could be used as
well. From the average entry size in the sample and𝑑 , we then derive
the estimated size of partial hash-maps, allowing our optimizer to
find a good number of partitions for each feature. Heuristically, we
schedule more tasks than cores to mitigate skew. For the build and
apply phases, we schedule 2 and 4 × #𝑐𝑜𝑟𝑒𝑠 tasks, respectively. We

Build Merge Apply Meta

Bin & DC, 
RC & DC

Bin & DC, 
FH & DC

RC & DC

Alloc 
Output

Alloc 
Meta

Figure 2: Three Examples of Optimized Task Graphs.

also ensure a minimum number of rows in each partition to avoid
unnecessary overhead, and we reduce the degree of parallelism if
the total memory estimate exceeds the memory budget.

Example Plans: Figure 2 shows three examples (each with
two features) of optimized parallelization strategies. In the first
example (left), we apply binning and dummy-coding on a numerical
column and recoding and dummy-coding on a categorical column.
We schedule two partial build tasks per column, followed by their
merge tasks.We then schedule output andmetadata allocation tasks,
the parallel apply tasks (two per column), and metadata collection
tasks. In the second example (middle), we replace recoding with
feature hashing. Here, the allocation tasks have no dependencies to
the build tasks as the optimizer derives the output dimensions from
#bins and the hash domain 𝑘 . The third example (right) includes
recoding and dummy-coding. Here, we schedule a single recode
build-task per feature because otherwise, the estimated total size—
including partial maps—exceeds the memory constraint (𝑀𝐵 ).

3.4 Limitations

We summarize remaining limitations, which we see out-of-scope
of the initial UPLIFT framework and thus, as future work.

• Runtime Backends: Our framework currently only applies to
local operations on CPUs. Extending UPLIFT to distributed,
data-parallel [118] operations, federated backends [10], and
hardware accelerators [83] is interesting future work.

• Optimizer Guarantees: Our rule-based optimizer does not
yet provide guarantees on finding cost-optimal plans, or
ensuring not to exceed the given memory budget. Other
valuable optimizer extensions include scan sharing among
transformations, and fusing build and apply phases.

4 TRANSFORMATION BENCHMARK

As a basis for evaluating—and to foster research on—feature trans-
formations, we define the FTBench benchmark using synthetic and
publicly available real datasets. FTBench leverages well-known
and publicly available data sets from UCI [27], AMiner [2] and
Kaggle. Inspired by previously reported challenges [114], we aug-
ment the benchmark with real and synthetic datasets that capture
choke points [30]. These datasets and use cases cover different do-
mains and modalities (numerical, categorical, text, and time series),
common feature transformations, varying data and transformation
characteristics (number and distribution of distinct values, number
of bins, string lengths, and sparsity), and workload types (batch
and mini-batch transformation). We further define scale factors
for selected use cases. Table 2 summarizes our 15 use cases. The

2932



Table 2: Overview of FTBench Datasets and Use Cases.

ID Dataset Input Shape Transformations Significance Output Shape

T1 Adult 32K × 15 Bin+DC (5), DC (9), PT (1) Popular dataset 32K × 130
T2 KDD 98 95K × 469 Bin (334), DC (135), Scale (469) Skewed #distinct: 50-900 95K × 6K
T3 Criteo 10M × 39 DC (26) Skewed & large #distinct: 10-1.4M 10M × 5.8M
T4 Criteo 10M × 39 Bin (13), RC+Scale(26) Scaled binning & #distinct 10M × 39
T5 Santander 200K × 200 Bin+DC (200) Equi-height with small #bins 200K × 2K
T6 Crypto 48M × 10 Bin (10) Large #bins (100K), equi-width 48M × 10
T7 Crypto 48M × 10 Bin (10) Large #bins (100K), equi-height 48M × 10
T8 HomeCredit 31K × 122 DC (16) Popular use case 31K × 245
T9 CatInDat 3M × 24 FH+DC (24) Feature hashing for large #rows 3M × 24K
T10 Abstract 281K × 3 Count Vectorizer Bag-of-Words w/ large #distinct 281K × 25M
T11 Abstract 100K × 1K Embedding (dim = 300) Embedding large #words 100K × 300K
T12 Synthetic 100K × 100 Bin (50), RC (50) Mini-batch transformation 100K × 100
T13 Synthetic 10M × 10 RC (10) Varying strlen: 25-500 10M × 10
T14 Synthetic 100M × 4 RC (4) Varying #distinct: 100K-1M 100M × 4
T15 Criteo 5M × 39 Various Combinations End-to-end feature engineering Scalar

transformations column indicates the applied transformation types
and the number of columns they are applied on.

Adult is a commonly-used census dataset for classifying high-
/low salary with 6 numerical and 9 categorical features. Use case T1
dummy-codes 9 categorical columns, as well as bins (5 equi-width
bins) and dummy-codes 5 numerical columns.

KDD 98 is a regression problem for donation campaign returns.
This dataset has 334 numerical and 135 categorical features with
skewed distinct values across columns (in the range of 50 to 900).
In this T2 use case, we first bin (5 equi-width bins) the numeri-
cal columns, and dummy-code both the binned and categorical
columns, followed by standard scaling on all columns.

CriteoD21: We use 1 of 24 days from the Criteo [56] click logs
dataset, which consists of 13 numerical and 26 categorical features.
The categorical columns have skewed distinct values (10 to 76M)
and string entries are 8-character hashes. We define two use cases:
T3 performs dummy-coding on the categorical columns, and T4
performs binning on numerical features (equi-width 10 bins) and
recoding and standard-scaler on categorical features. Additionally,
we define a scale factor to select a subset of the rows from 1M to
192M with a default value of 10. With 10M rows, the first use case
produces 5.8M features after dummy-coding. These use cases study
dummy-coding and binning with many rows and columns.

Santander [89] from Kaggle contains an anonymized transac-
tion history of the Santander bank for predicting transactions. It
has 200 numerical columns and 200K rows. Use case T5 applies
equi-height binning (10 bins) and dummy-coding on all the features.

Crypto [34] from Kaggle contains historic trades of crypto as-
sets at a minute granularity. This dataset has 24M rows and 10
numerical features. We define two binning use cases (T6 with equi-
width, T7 with equi-height) both with 100K bins for every column.
Additionally, we define a scale factor to increase the number of
rows (default 2 produces 48M rows) via replication.

HomeCredit:TheHome credit default risk dataset [39] contains
information on loan re-payments. This dataset has 31K rows and
122 columns, out of which 16 are categorical. Use case T8 dummy-
codes the categorical columns into 245 output columns.

Cat in Dat: The Categorical Feature Encoding Challenge [48]
from Kaggle tests various categorical feature encoding techniques.

This dataset has 24 categorical features and 300K rowswith #distinct
between 2 and 300K. We replicate the dataset by a scale factor
(default 10 produces 3M rows). Full dummy-coding produces 316K
columns. However, in use case T9, we apply feature hashing (with
𝑘 = 1K) followed by dummy-coding, which results in 24K features.

Paper Abstracts: Furthermore, we use the paper abstracts from
the AMiner citation dataset [2]. Use case T10 tokenizes the abstracts
into unigrams, bigrams, and trigrams, and creates Bags of N-grams.
Tokenizing 281K abstracts produces 93M N-grams, out of which
25.5M (473K #unigrams, 6M #bigrams, 19M #trigrams) are unique.
Use case T11 simulates scoring with pre-trained word embeddings.
We perform word embedding (pre-trained onWikipedia, dimension
300) on the abstracts—padded to the maximum abstract length—in
a batch-wise manner (10K batch size). Embedding 100K abstracts
padded to maximum length of 1Kwords yields a 100K×300Kmatrix,
which has several challenging choke points as well [42].

Mini-Batch Transforms: T12 defines mini-batch feature trans-
formations, typical for Deep Neural Networks (DNNs) and scoring.
We use a synthetic dataset of shape 100K × 100 (50 numerical and
50 categorical). To simulate mini-batch scenarios, we execute 10
epochs with batch size 1024, where we apply encoders for equi-
width binning and recoding, as well as max(MV) operations.

String Length: T13 tests the impact of string lengths on recod-
ing. The synthetic data has 10M rows and 10 categorical columns,
each with 1M distinct values. Entries are generated as fixed-length,
random alphanumeric strings. A large number of distinct values
makes it more difficult to keep the hash-maps in the CPU caches.
A scale factor varies the string length in [25, 500] (default 200).

Distinct Values: T14 studies the impact of a large number of
distinct values. We apply recoding on a synthetic dataset having
100M rows and 4 columns. All feature values are 5-character al-
phanumeric strings. A scale factor controls the number of distinct
values from 100K to 10M (default 1M) per feature.

Feature Engineering: Finally, T15 represents a feature engi-
neering use case [45, 50]. We encode the Criteo dataset (scale factor
5) with different feature transformation specifications, and find the
best configuration using Naive Bayes as an inexpensive estimator.
Used transformations include binning with different numbers of
bins, and different categorical encoders.

2933



5 EXPERIMENTS

We study the performance of UPLIFT for various feature transfor-
mations and data characteristics via micro benchmarks and our
FTBench feature transformation benchmark. Overall, we observe
that optimized parallelization strategies yield robust improvements.

5.1 Experimental Setting

HW Environment:We ran all experiments on a Ubuntu 20.04.1
node having a single AMD EPYC 7302 CPU @3.0-3.3 GHz (16 phys-
ical/32 virtual cores) with 512KB, 8MB and 128MB L1, L2 and L3
caches, and 128 GB DDR4 RAM (peak performance is 768 GFLOP/s,
183.2 GB/s). We used OpenJDK 11 with 110 GB max and initial JVM
heap sizes for UPLIFT and Python 3.8 for other baselines.

Baselines: We compare UPLIFT with multiple popular ML sys-
tems and frameworks under different configurations.

• Apache SystemDS [15]: Our primary baseline is Base, which
refers to the default configuration of SystemDS with single-
threaded transformencode. Base, however, shares the new
cache-conscious runtime implementation with UPLIFT.

• Scikit-learn [76]: SKlearn is the most popular choice for fea-
ture transformations. We use its FeatureUnion to construct
pipelines for transformations available in the Preprocessing
module. We also explored its n_jobs parameter for paral-
lelism, but did not measure significant improvements.

• Other ML Systems: Additionally, we use more specialized
ML Systems for some use cases. These systems include
Dask [87] and spark.ml 3.1 [67] (Spark) for row-based par-
allelization and fused transformation/training pipelines, as
well as Keras [21] on Tensorflow 2.8 [3] for NLP use cases.

We provide two reference implementations of the full proposed
benchmark (see reproducibility): one for UPLIFT and Base—written
in SystemDS’ DML scripting language with R-like syntax [15] and
JSON transform spec—and another for SKlearn. We warm start
SystemDS with two runs for JIT compilation. We report the average
elapsed time of the next 3 runs for SystemDS and Sklearn.

5.2 Micro Benchmarks

We conduct an ablation study of various aspects of UPLIFT. The
micro benchmarks investigate speedup, time breakdown of phases,
impact of different numbers of row partitions, and the UDF-based in-
tegration of linear algebra operations. We use synthetic datasets for
controlling data characteristics, distinct values, and string lengths.

Speedup:We first evaluate the speedup of UPLIFT with increas-
ing #threads and #rows for recoding (RC), dummy-coding (DC),
and feature hashing (FH, with 𝑘 = 10K). We use synthetic data with
5M rows, 100 categorical columns (with 100K #distinct each), and 5-
char strings, where dictionaries still fit in L3. Figure 3(a) shows the
speedup with increasing #threads of up to 10x at 16 physical cores.
Despite producing an ultra-sparse output with 10M columns, DC
performs equally well due to efficient sparsity handling. In contrast,
FH shows a smaller speedup because it is a memory-bandwidth-
bound operation. Figure 3(b) further shows the speedup—compared
to single-threaded operations—with increasing number of rows,
while keeping the #distinct constant at 10K. UPLIFT yields improve-
ments from 1.5K rows and the highest speedup for RC (12x) and
DC (10x) at 500K rows, and for FH (8x) at 150K rows.

1

2

5

10

1 2 4 8 16 32

Sp
ee
d−
up

#Threads

RC
DC
FH

(a) Speedup w/ #Threads

0.2

0.5
1.0
2.0

5.0
10.0
20.0

1.5K 15K 150K 1.5M

Sp
ee
d−
up

#Rows

Single−threaded

L3
limit

RC
DC

FH

(b) Speedup #Threads=32 w/ #Rows

Meta
Apply

Alloc
Build

0

50

100

150

200

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

RC−U
RC−B

DC−U
DC−B

BIN
−U

BIN
−B

(c) Phases

1 2 4 8 16 32 64 128

RC
BinH

BinW
FH

0
10
20
30
40
50

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

2 4 8 16 32 64 128 256

Opt.

(d) #Build/#Apply Partitions

Figure 3: Micro Benchmarks.

Transformation Phases: To understand the absolute time and
speedup of the individual transformation tasks, we measure their
time break-down. We use the same dataset as before but place a
barrier after each phase in the task-graph. Figure 3(c) shows the
breakdown for UPLIFT (XX-U) and Base (XX-B). For binning, we
replace 50 categorical by numerical features. For RC and DC, the
apply phase is slightly slower than the build. This is because apply
requires the threads to read from a column-oriented data frame and
write to a row-oriented matrix, which causes cache misses. All input
features were strings, whose parsing overhead for binning can be
reduced via schema information on read. The sparse DC-apply (into
a CSR matrix) is slightly slower than the dense RC-apply because
column-oriented access into the row-pointer arrays of a CSR matrix
causes more cache misses. Finally, the overheads of allocations and
multi-threaded metadata collection are negligible here.

Row Partitioning: We further study the impact of the number
of partitions (tasks) for build and apply on synthetic data of 100M
rows, 4 columns of 1M distinct values (5 chars) each. In detail, we
evaluate 8 configurations of build and apply for recoding (RC), fea-
ture hashing (FH), equi-width (BinW, 10), and equi-height (BinH,
10) binning. Starting with 1/2 partitions for build and apply, we
double them step-wise up to 128/256. Figure 3(d) shows that per-
formance improves up to 8/16. Beyond that, the overhead of partial
maps and their merging increases. Feature hashing is robust to task
over-provisioning because it has no metadata. Our heuristic-based
optimizer also picks 8 and 16 #partitions for this dataset.

Linear Algebra Operations: There are two approaches of inte-
grating linear-algebra-based transformations with UPLIFT: UDF ap-
ply tasks and LA programs outside UPLIFT (our default). Figure 4(e)
shows the execution time for both and Base on FTBench’s T2 and
T4 as well as a modified T4 (T4*), where we replace Binning with
min/max-scaling. For T2, UPLIFT with std-scaling as UDF is 4.5x
slower than calling std-scaling as a built-in after transformencode.
Forcing a dense output matrix and column-oriented scaling of a
row-oriented matrix reduces performance. In contrast, a separate
scaling exploits SystemDS’ row-wise multi-threaded operations.
For T4, however, both approaches perform equally well, as the out-
put matrix by recoding is already dense. For T4*, the UDF approach
yields a 30% improvement because it reduces synchronization bar-
riers and produces fewer materialized intermediates.

2934



T1

SKlearn
Base
UPLIFT
Spark

Dask
KerasNp
Keras

0.01

0.05
0.10

0.50
1.00

5.00
10.00

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

(a) Adult Dataset

T8 T5 T2

SKlearn
Base
UPLIFT

0

2

4

6

8

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

(b) Small Datasets

T3 T4 T6 T7 T9 T12

SKlearn
Base

UPLIFT
Keras

0

50

100

150

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

(c) Large Datasets

T10 T11

SKlearn
Base
UPLIFT
Keras

0
50

100
150
200
250
300
350

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

(d) Text Datasets

Base Scale Scale-UDF

T2 8.3 s 3.0 s 13.6 s
T4 47.5 s 11.3 s 11.3 s

T4* 41.1 s 11.1 s 8.6 s

(e) UPLIFT UDF Scaling

0
50

100
150
200
250

100 200 300 400 500

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

T13 (#Characters in Each Entry)

SKlearn
Base
UPLIFT

(f) String Length

0
100
200
300
400
500
600

200K 400K 600K 800K 1M

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

T14 (#Distinct Items in Each Column)

SKlearn
Base
UPLIFT

(g) Distinct Values

Spark Sklearn Base UPLIFT

NaiveBayes
Transformations

0

200

400

600

800

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

(h) T15: Feature Engineering

Figure 4: FTBench Use Case Results and Ablation Studies.

5.3 Feature Transformation Benchmark

We now report FTBench benchmark results, primarily for Sys-
temDS (Base and UPLIFT) and SKlearn. The SKlearn pipelines
(FeatureUnion) have been created automatically by parsing the
same JSON transform spec used for UPLIFT and Base. We divide the
use cases into five groups: small real datasets, large real datasets,
text transformations on real datasets, large strings and many dis-
tinct values on synthetic data, and other baselines. Finally, we
execute the end-to-end feature engineering use case and a subset
of other use cases in two specialized systems and report the results.

Small Datasets: Figure 4(a) shows the runtime of all baseline
systems for the use case T1. For the Dask, Spark and Keras im-
plementations, we build a pipeline of transformations with lazy
evaluation. We compare two Keras methods for dictionary creation:
Keras’ built-in adapt (Keras) and Numpy.unique() to find the dis-
tinct items and pass it to Keras (KerasNp). KerasNp is 2x faster than
Keras; Base and SKlearn are similar and 32x/52x faster than KerasNp
and Keras. UPLIFT further improves the runtime by 6x. Dask and
Spark’s static parallelization schemes are ineffective for smaller
datasets, and ≈10x slower than UPLIFT. Figure 4(b) shows the run-
time for the remaining use cases on smaller datasets. For T8, UPLIFT
improves by 25% and 2.3x over Base and SKlearn. Pass-through
(106 columns) with provided schema is memory-bandwidth-bound
and only benefits slightly from multi-threading. For T5, UPLIFT
is 15x and 16x faster than Base and SKlearn. The build phase of
equi-height binning benefits from parallelization (parallel sort). For
T2, SKlearn is 25% faster than Base. UPLIFT further improves by 2x
and 2.6x. For this use case, we keep the row-wise, multi-threaded
standard scaling outside of transformencode/UPLIFT.

LargeDatasets: Figure 4(c) shows the runtime for the large-scale
use cases. T3 and T4 are based on the Criteo dataset (scale factor
10), where UPLIFT yields speedups of 4x/7x for T3 and 4x/9x for T4
compared to Base and SKlearn. T6 and T7 use the Crypto dataset
(scale factor 2). For equi-width binning in T6, UPLIFT is 2x and 6.5x
faster than Base and SKlearn, where both Base and UPLIFT find
the bin boundaries via a single scan. UPLIFT improves by 12.4x and
11.8x for T7 by parallelizing the more expensive build phase of equi-
height binning. For T9 (scale factor 10), UPLIFT yields speedups of
7x and 31x over Base and SKlearn. In T12, we replace SKlearn with
Keras. UPLIFT is 3.8x and 16x faster than Base and Keras. While

Table 3: Comparison with Other Baseline ML Systems.

Spark Spark1T Dask SKlearn Base UPLIFT

T2 19.6 s 48.4 s 99 s 5.8 s 8.3 s 3 s

T3 44.2 s 133.4 s 80.6 s 105.7 s 62 s 14 s

T9 0.75 s 1.3 s NA 27.9 s 6.1 s 0.85 s

the Keras apply phase is 2x faster than Base, its build phase is 10x
slower. In these larger use cases, Base generally performs better
due to the cache-conscious runtime of transformencode.

Text Transformations: Figure 4(d) shows the runtime of T10
and T11 (text). We use the nltk [102] Python library for tokenizing
n-grams. For T10, we read the n-grams, recode the token sequence,
and construct a selection matrix via table from sequence positions
to distinct tokens. UPLIFT is 33% faster than Base due to the paral-
lelized recode, and 1.7x/2x faster than Sklearn’s CountVectorizer
and Keras’ TextVectorization. For T11, we use transformapply
to convert the tokens into a selection matrix and obtain the embed-
dings via a matrix multiply. UPLIFT uses multi-threaded operations
and is 2x and 4.5x faster than Base’s single-threaded operations, and
Keras-Tensorflow’s embedding layer. This result shows that trans-
formations via LA operations yield very competitive performance
by reusing runtime kernels and sparsity handling [98].

Data Characteristics: Furthermore, we systematically vary the
string lengths in T13, and the #distinct per column in T14. Figure 4(f)
shows the T13 results, where UPLIFT is 7.5x faster than Base for
strings of size 50. However, the speedup drops to 2.9x for string
length 500 due to more cache misses. Similarly, UPLIFT improves
over SKlearn by 21x for smaller and 5x for the larger strings. In
contrast, Figure 4(g) shows increasing speedup with an increasing
#distinct (row-partitioned parallel recode-build). UPLIFT improves
over Base and SKlearn by 9x/20x for 100K and by 11.4x/30x for 1M
distinct values due to multi-threaded latency hiding.

Other Baselines: Table 3 shows the execution time of T2, T3 and
T9 formore baselines: Spark, single-threaded Spark (Spark1T), Dask,
and SKlearn.We replaced dummy-codingwith recoding in Dask due
to its sub-par sparsity handling. Spark and Dask yield 2.4x and 24%
speedups compared to SKlearn for T3. However, UPLIFT’s dynamic
parallelization scheme is 3x and 5.6x faster than Spark and Dask. For
the small T2, Spark improves 2.5x over single-threaded execution,

2935



but is 6.7x slower than UPLIFT. For T9, Spark and UPLIFT performs
similarly. Spark compresses the sparse features into a single column
for feature hashing, which avoids the handling of sparsity. Dask
does not provide a feature-hashing API. Figure 4(h) compares the
runtime of feature engineering in T15, with a time breakdown of 6
different feature transformations and their downstreamNaïve Bayes
training. UPLIFT yields speedups of 2x/3x/6x over Spark, Base and
SKlearn for transformations; and 13x/2.3x/5.3x overall.

6 RELATEDWORK

Our UPLIFT framework and benchmark for parallel feature trans-
formation workloads are generally related to feature engineering
and ML system benchmarks, but also to specific techniques for task
scheduling and efficient group-by/join operators.

Feature Engineering: As part of data preparation, data scien-
tists engineer general or domain-specific features [4, 88], perform
feature transformations, and apply feature selection [107, 111, 120].
Besides our survey of feature transformations in Section 2, there are
related system categories. First, feature-centric tools like DeepDive
[96], Overton [86], and Ludwig [70] focus on multi-modal input
features, and provide, for example, high-level, data-type-specific en-
coders, combiners, and decoders [70]. Second, feature engineering
is also related to data validation [80, 90] (e.g., with checks of the #
distinct items for categoricals and min/max ranges for numerics) as
well as data augmentation [84, 110] (where labeling functions are
defined on high-level features). An organization-wide reuse of data
validation constraints and features (e.g., through feature stores [75])
further ensures consistency and avoid unnecessary redundancy.
Third, several AutoML tools such as Auto-WEKA [55, 106] and Auto-
sklearn [31, 32] include data preparation, feature transformations,
and/or feature selection primitives in order to improve end-to-end
accuracy. Similarly, sparse n-gram token featurization [42] finds
relevant n-grams for pruning, and FairExp [88] constructs and se-
lects features for bias reduction; both, without significant accuracy
degradation. In contrast to these feature-oriented systems—which
simplify finding good transformations—our UPLIFT framework
makes an orthogonal contribution of improving the runtime of
given transformations via fine-grained task and data parallelism.

Benchmarking ML Systems: Early benchmarks for ML sys-
tems were part of large-scale data analysis benchmarks such as
BigBench [20, 36], HiBench [115], GenBase [101], and SparkBench
[5], often defining ML pipelines including the necessary feature
transformations. The new TPCx-AI [109] follows similar design
principles with scaling up to 10TB. Later DNN benchmarks such as
DAWNBench [22] and MLPerf [66] focused specifically on training
computer vision, translation, and recommendation models to a spe-
cific target accuracy. More recently, a variety of benchmarks have
been proposed for special aspects such as AutoML [37, 63], linear al-
gebra operations [105], data cleaning [60], classifying feature types
[95], and multi-task reinforcement learning [117]. Our FTBench
fills the gap of systematically evaluating feature transformations.

Task-based Scheduling: Parallel feature transformations
mostly rely on static, parallelization strategies [1, 6, 67], overlay
transformations and model training [4, 72] and delayed material-
ization [6]. However, fine-grained task scheduling has been studied
extensively in different areas. First, task-parallel and hybrid (task-

and data-parallel) strategies in ML systems includes future-based
task scheduling in Ray [71], parallel for-loops in SystemDS [17],
inter- and intra-operator parallelism in TensorFlow [3], irregular
data partitioning/decomposition in DMac [116], Dask [87], and
Modin [77, 78], flattened nested parallelism in Matryoshka [35],
and model-hopper parallelism in Cerebro [73]. Several systems also
leverage task partitioning and scheduling from HPC [46, 54]. Sec-
ond, fine-grained task parallelism has also been leveraged in query
optimization [43, 97]. Similar to fine-grained transformation tasks,
breaking operators into basic primitives can create more optimiza-
tion potential [26, 28, 74]. Fourth, at runtime level, fine-grained
task scheduling gains increasing popularity. Examples are NUMA-
aware operator and pipeline scheduling [52, 59, 108], prioritization
of HTAP workload tasks [82, 112], and irregular reinforcement
learning workloads with Ray [61, 71]. UPLIFT similarly schedules
fine-grained task graphs, but optimizes these graphs according to
data, (transformation) workload, and cluster characteristics.

Group-by and Join Operators: Feature transformation tasks—
like recoding build and apply—are closely related to efficient group-
by (or deduplication) and join operators. There is a long history of
comparing hash and sort-merge join implementations on contem-
porary hardware [7, 8, 53, 91]. In micro-benchmarks, partitioned
hash-joins [65]—with one or more range/radix partitioning phases
for better locality—often perform very well. However, comparisons
on query workloads observed slow-downs with partitioning due
to pipeline breakers and out-of-order tuple fetching [9]. Recently,
Bloom and Cuckoo filters are increasingly used—through sideways
information passing [47]—for pre-filtering of the probe side [9, 57].
Both, group-by and join operators have been specialized for GPUs
[49], and such implementations were evaluated with new link tech-
nologies [64, 85]. Similarly, there are specialized implementations
for compressed data [58] and group-joins with shared group-by and
join keys [69]. In contrast to efficient group-by and join operators
(except special handling of GROUPING SETS), feature transfor-
mations apply many concurrent build (group-by, sort) and apply
(FK-PK join) operations. However, underlying ideas of group-by
and join operators can be adapted to the specific characteristics of
feature transformations (e.g., partitioned recode-build).

7 CONCLUSIONS

To summarize, we introduced UPLIFT as a parallel feature trans-
formation framework with fine-grained task scheduling, as well
as FTBench for evaluating such frameworks on a variety of trans-
formation use cases. Breaking the transformation workload into
fine-grained tasks and their dependencies yields a very clean frame-
work that is amenable to optimizationwith regard to data, workload,
and hardware characteristics. Our heuristic, transformation-based
optimizer already achieves good improvements compared to static
parallelization and baseline systems. During the development of
UPLIFT, FTBench already proved to be very useful, and we hope it
will foster additional research on efficient feature transformations.
Interesting directions for future work include improved runtime
techniques, a cost-based optimizer for feature transformation task
graphs, and the pushdown of compression into such feature trans-
formation pipelines. Finally, FTBench can be improved by addi-
tional reference implementations for more baseline ML systems.

2936



REFERENCES

[1] 2021. Joblib: running Python functions as pipeline jobs. https://joblib.
readthedocs.io/en/latest/ Accessed: 2022-07-11.

[2] 2022. Citation Network Dataset. https://www.aminer.org/citation Accessed:
2022-07-11.

[3] Martín Abadi et al. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI. 265–283.

[4] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré.
2017. Mind the Gap: Bridging Multi-Domain Query Workloads with Empty-
Headed. PVLDB 10, 12 (2017), 1849–1852.

[5] Dakshi Agrawal et al. 2015. SparkBench - A Spark Performance Testing Suite.
In TPCTC@VLDB Workshop.

[6] Zeeshan Ahmed et al. 2019. Machine Learning at Microsoft with ML.NET. In
SIGKDD. 2448–2458.

[7] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. 2012. Mas-
sively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems.
PVLDB 5, 10 (2012), 1064–1075.

[8] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013. Multi-
Core, Main-Memory Joins: Sort vs. Hash Revisited. PVLDB 7, 1 (2013), 85–96.

[9] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition,
or Not to Partition, That is the Join Question in a Real System. In SIGMOD.
168–180.

[10] Sebastian Baunsgaard et al. 2021. ExDRa: Exploratory Data Science on Federated
Raw Data. In SIGMOD. 2450–2463.

[11] Denis Baylor et al. 2017. TFX: A TensorFlow-Based Production-Scale Machine
Learning Platform. In SIGKDD. 1387–1395.

[12] Denis Baylor et al. 2019. Continuous Training for Production ML in the Tensor-
Flow Extended (TFX) Platform. In OpML. 51–53.

[13] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. 2007. On synopses for distinct-value estimation under multiset opera-
tions. In SIGMOD. 199–210.

[14] Matthias Boehm et al. 2016. SystemML: Declarative Machine Learning on Spark.
PVLDB 9, 13 (2016), 1425–1436.

[15] Matthias Boehm et al. 2020. SystemDS: A Declarative Machine Learning System
for the End-to-End Data Science Lifecycle. In CIDR.

[16] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. PVLDB 11, 12 (2018),
1755–1768.

[17] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen,
Yuanyuan Tian, Douglas Burdick, and Shivakumar Vaithyanathan. 2014. Hy-
brid Parallelization Strategies for Large-Scale Machine Learning in SystemML.
PVLDB 7, 7 (2014), 553–564.

[18] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR. 225–237.

[19] Lars Buitinck et al. 2013. API design for machine learning software: experiences
from the scikit-learn project. In LML@PKDD Workshop.

[20] Paul Cao, Bhaskar Gowda, Seetha Lakshmi, Chinmayi Narasimhadevara, Patrick
Nguyen, John Poelman, Meikel Poess, and Tilmann Rabl. 2016. From BigBench
to TPCx-BB: Standardization of a Big Data Benchmark. In TPCTC@VLDB Work-

shop.
[21] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras Accessed:

2022-07-11.
[22] Cody Coleman et al. 2019. Analysis of DAWNBench, a Time-to-Accuracy

Machine Learning Performance Benchmark. ACM SIGOPS Oper. Syst. Rev. 53, 1
(2019), 14–25.

[23] Dask Development Team. 2016. Dask: Library for dynamic task scheduling.
https://dask.org Accessed: 2022-07-11.

[24] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann
Rabl, and Volker Markl. 2020. Optimizing Machine Learning Workloads in
Collaborative Environments. In SIGMOD. 1701–1716.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In NAACL-HLT. 4171–4186.

[26] Jens Dittrich and Joris Nix. 2020. The Case for Deep Query Optimisation. In
CIDR.

[27] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml Accessed: 2022-07-11.

[28] Tarek Elgamal, Shangyu Luo,Matthias Boehm, Alexandre V. Evfimievski, Shirish
Tatikonda, Berthold Reinwald, and Prithviraj Sen. 2017. SPOOF: Sum-Product
Optimization and Operator Fusion for Large-Scale Machine Learning. In CIDR.

[29] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. 2018. Compressed linear algebra for large-scale machine
learning. VLDB J. 27, 5 (2018), 719–744.

[30] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey
Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The
LDBC Social Network Benchmark: Interactive Workload. In SIGMOD. 619–630.

[31] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer,
and Frank Hutter. 2020. Auto-Sklearn 2.0: The Next Generation. CoRR

abs/2007.04074 (2020).
[32] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,

Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and Robust
Automated Machine Learning. In Automated Machine Learning. 113–134.

[33] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007.
Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm.
In AOFA.

[34] G-Research. 2021. G-Research Crypto Forecasting. https://www.kaggle.com/c/
g-research-crypto-forecasting/data Accessed: 2022-07-11.

[35] Gábor E. Gévay, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021. The Power
of Nested Parallelism in Big Data Processing. In SIGMOD. 605–618.

[36] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: towards an industry stan-
dard benchmark for big data analytics. In SIGMOD. 1197–1208.

[37] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl,
and Joaquin Vanschoren. 2019. An Open Source AutoML Benchmark. CoRR
abs/1907.00909 (2019).

[38] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A.
Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning Input Data
Processing as a Service. In USENIX ATC. 689–706.

[39] Home Credit Group. 2018. Home Credit Default Risk. https://www.kaggle.
com/c/home-credit-default-risk/data Accessed: 2022-07-11.

[40] Joaquin Anton Guirao et al. 2019. Fast AI Data Preprocessing with NVIDIA
DALI. https://developer.nvidia.com/blog/fast-ai-data-preprocessing-with-
nvidia-dali Accessed: 2022-07-11.

[41] Peter J. Haas and Lynne Stokes. 1998. Estimating the Number of Classes in a
Finite Population. J. Amer. Statist. Assoc. 93 (1998), 1475–1487.

[42] John Hallman. 2021. Efficient Featurization of Common N-grams via Dynamic
Programming. https://sisudata.com/blog/efficient-featurization-common-n-
grams-via-dynamic-programming Accessed: 2022-07-11.

[43] Wook-Shin Han, Wooseong Kwak, Jinsoo Lee, Guy M. Lohman, and Volker
Markl. 2008. Parallelizing query optimization. PVLDB 1, 1 (2008), 188–200.

[44] Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog in
practice: algorithmic engineering of a state of the art cardinality estimation
algorithm. In EDBT. 683–692.

[45] Franziska Horn, Robert Pack, and Michael Rieger. 2019. The autofeat Python
Library for Automatic Feature Engineering and Selection. CoRR abs/1901.07329
(2019).

[46] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. 1991. Factoring:
a practical and robust method for scheduling parallel loops. In Supercomputing.
610–632.

[47] Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing
for Push-Style Query Processing. In ICDE. 774–783.

[48] Kaggle. 2019. Categorical Feature Encoding Challenge. https://www.kaggle.
com/c/cat-in-the-dat/data Accessed: 2022-07-11.

[49] Tomas Karnagel, René Müller, and Guy M. Lohman. 2015. Optimizing GPU-
accelerated Group-By and Aggregation. In ADMS@VLDB Workshop.

[50] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. ExploreKit: Automatic
Feature Generation and Selection. In ICDM. 979–984.

[51] Keras development team. 2022. Working with preprocessing layers. https:
//keras.io/guides/preprocessing_layers/ Accessed: 2022-07-11.

[52] David Kernert, Wolfgang Lehner, and Frank Köhler. 2016. Topology-aware
optimization of big sparse matrices and matrix multiplications on main-memory
systems. In ICDE. 823–834.

[53] Changkyu Kim et al. 2009. Sort vs. Hash Revisited: Fast Join Implementation
on Modern Multi-Core CPUs. PVLDB 2, 2 (2009), 1378–1389.

[54] Jonas H. Müller Korndörfer, Ahmed Eleliemy, Ali Mohammed, and Florina M.
Ciorba. 2022. LB4OMP: A Dynamic Load Balancing Library for Multithreaded
Applications. IEEE Trans. Parallel Distributed Syst. 33, 4 (2022), 830–841.

[55] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA. J. Mach. Learn. Res. 18 (2017), 25:1–25:5.

[56] Criteo AI Lab. 2020. Criteo 1TB Click Logs dataset. https://ailab.criteo.com/
download-criteo-1tb-click-logs-dataset/ Accessed: 2022-07-11.

[57] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter A. Boncz. 2019.
Performance-Optimal Filtering: Bloom overtakes Cuckoo at High-Throughput.
PVLDB 12, 5 (2019), 502–515.

[58] Jae-Gil Lee et al. 2014. Joins on Encoded and Partitioned Data. PVLDB 7, 13
(2014), 1355–1366.

[59] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014.
Morsel-driven parallelism: a NUMA-aware query evaluation framework for the
many-core age. In SIGMOD. 743–754.

[60] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021.
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classifi-
cation Tasks. In ICDE. 13–24.

2937

https://joblib.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/latest/
https://www.aminer.org/citation
https://github.com/fchollet/keras
https://dask.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.kaggle.com/c/g-research-crypto-forecasting/data
https://www.kaggle.com/c/g-research-crypto-forecasting/data
https://www.kaggle.com/c/home-credit-default-risk/data
https://www.kaggle.com/c/home-credit-default-risk/data
https://developer.nvidia.com/blog/fast-ai-data-preprocessing-with-nvidia-dali
https://developer.nvidia.com/blog/fast-ai-data-preprocessing-with-nvidia-dali
https://sisudata.com/blog/efficient-featurization-common-n-grams-via-dynamic-programming
https://sisudata.com/blog/efficient-featurization-common-n-grams-via-dynamic-programming
https://www.kaggle.com/c/cat-in-the-dat/data
https://www.kaggle.com/c/cat-in-the-dat/data
https://keras.io/guides/preprocessing_layers/
https://keras.io/guides/preprocessing_layers/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/


[61] Eric Liang et al. 2018. RLlib: Abstractions for Distributed Reinforcement Learn-
ing. In ICML.

[62] Edo Liberty et al. 2020. Elastic Machine Learning Algorithms in Amazon
SageMaker. In SIGMOD. 731–737.

[63] Yu Liu, Hantian Zhang, Luyuan Zeng, Wentao Wu, and Ce Zhang. 2018. ML-
Bench: Benchmarking Machine Learning Services Against Human Experts.
PVLDB 11, 10 (2018), 1220–1232.

[64] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In SIGMOD. 1633–1649.

[65] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Optimizing
Main-Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng. 14, 4
(2002), 709–730.

[66] Peter Mattson et al. 2020. MLPerf Training Benchmark. In MLSys, Inderjit S.
Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.).

[67] Xiangrui Meng et al. 2016. MLlib: Machine Learning in Apache Spark. JMLR

17 (2016), 34:1–34:7.
[68] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In ICLR Workshop.
[69] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with

Group-By and Join by Groupjoin. PVLDB 4, 11 (2011), 843–851.
[70] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. 2019. Ludwig: a

type-based declarative deep learning toolbox. CoRR abs/1909.07930 (2019).
[71] Philipp Moritz et al. 2018. Ray: A Distributed Framework for Emerging AI

Applications. In OSDI. 561–577.
[72] Derek Gordon Murray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. 2021. tf.data:

A Machine Learning Data Processing Framework. PVLDB 14, 12 (2021), 2945–
2958.

[73] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data
System for Optimized Deep Learning Model Selection. PVLDB 13, 11 (2020),
2159–2173.

[74] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans forModern
Hardware. PVLDB 4, 9 (2011), 539–550.

[75] Laurel J. Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan Leszczyn-
ski. 2021. Managing ML Pipelines: Feature Stores and the Coming Wave of
Embedding Ecosystems. PVLDB 14, 12 (2021), 3178–3181.

[76] Fabian Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. JMLR

12 (2011), 2825–2830.
[77] Devin Petersohn et al. 2020. Towards Scalable Dataframe Systems. PVLDB 13,

11 (2020), 2033–2046.
[78] Devin Petersohn, Dixin Tang, Rehan Sohail Durrani, Areg Melik-Adamyan,

Joseph Gonzalez, Anthony D. Joseph, and Aditya G. Parameswaran. 2021. Flexi-
ble Rule-Based Decomposition and Metadata Independence in Modin: A Parallel
Dataframe System. PVLDB 15, 3 (2021), 739–751.

[79] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained
Lineage Tracing and Reuse in Machine Learning Systems. In SIGMOD. 1426–
1439.

[80] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2017. Data Management Challenges in Production Machine Learning. In SIG-

MOD. 1723–1726.
[81] Fotis Psallidas et al. 2019. Data Science through the looking glass and what we

found there. CoRR abs/1912.09536 (2019).
[82] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and

Anastasia Ailamaki. 2016. Adaptive NUMA-aware data placement and task
scheduling for analytical workloads in main-memory column-stores. PVLDB
10, 2 (2016), 37–48.

[83] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine Learn-
ing in Python: Main Developments and Technology Trends in Data Science,
Machine Learning, and Artificial Intelligence. Inf. 11, 4 (2020), 193.

[84] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen
Wu, and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with
Weak Supervision. PVLDB 11, 3 (2017), 269–282.

[85] Aunn Raza, Periklis Chrysogelos, Panagiotis Sioulas, Vladimir Indjic, Angelos-
Christos G. Anadiotis, and Anastasia Ailamaki. 2020. GPU-accelerated data
management under the test of time. In CIDR.

[86] Christopher Ré. 2020. Overton: A Data System for Monitoring and Improving
Machine-Learned Products. In CIDR.

[87] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In SciPy. 130 – 136.

[88] Ricardo Salazar, Felix Neutatz, and Ziawasch Abedjan. 2021. Automated Feature
Engineering for Algorithmic Fairness. PVLDB 14, 9 (2021), 1694–1702.

[89] Banco Santander. 2019. Santander Customer Transaction Prediction. https://
www.kaggle.com/c/santander-customer-transaction-prediction/data Accessed:
2022-07-11.

[90] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bieß-
mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Quality
Verification. PVLDB 11, 12 (2018), 1781–1794.

[91] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD. 1961–1976.

[92] Scikit-learn development team. 2022. sklearn.preprocessing.KBinsDiscretizer.
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
KBinsDiscretizer.html Accessed: 2022-07-11.

[93] Scikit-learn development team. 2022. sklearn.preprocessing.OrdinalEncoder.
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder Accessed:
2022-07-11.

[94] Scikit-learn development team. 2022. User Guide for sklearn.preprocessing
Package. https://scikit-learn.org/stable/modules/preprocessing.html Accessed:
2022-07-11.

[95] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2021. Towards Benchmarking Feature Type Inference for AutoML Platforms.
In SIGMOD. 1584–1596.

[96] Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christo-
pher Ré. 2015. Incremental Knowledge Base Construction Using DeepDive.
PVLDB 8, 11 (2015), 1310–1321.

[97] Mohamed A. Soliman et al. 2014. Orca: a modular query optimizer architecture
for big data. In SIGMOD. 337–348.

[98] Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Rein-
wald, and Peter J. Haas. 2019. MNC: Structure-Exploiting Sparsity Estimation
for Matrix Expressions. In SIGMOD. 1607–1623.

[99] spark.ml development team. 2022. Extracting, transformation and selecting
features. https://spark.apache.org/docs/latest/ml-features Accessed: 2022-07-
11.

[100] SystemDS development team. 2022. DML Language Reference. https://apache.
github.io/systemds/site/dml-language-reference Accessed: 2022-07-11.

[101] Rebecca Taft, Manasi Vartak, Nadathur Rajagopalan Satish, Narayanan Sun-
daram, Samuel Madden, and Michael Stonebraker. 2014. GenBase: a complex
analytics genomics benchmark. In SIGMOD. 177–188.

[102] NLTK Team. 2022. Natural Language Toolkit. https://www.nltk.org/index.html
Accessed: 2022-07-11.

[103] Tensorflow development team. 2022. Tensorflow feature columnModule. https:
//www.tensorflow.org/api_docs/python/tf/feature_column Accessed: 2022-07-
11.

[104] Tensorflow development team. 2022. tf.keras.layers.StringLookup. https:
//www.tensorflow.org/api_docs/python/tf/keras/layers/StringLookup Accessed:
2022-07-11.

[105] Anthony Thomas and Arun Kumar. 2018. A Comparative Evaluation of Systems
for Scalable Linear Algebra-based Analytics. PVLDB 11, 13 (2018), 2168–2182.

[106] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: combined selection and hyperparameter optimization of classifi-
cation algorithms. In SIGKDD. 847–855.

[107] Robert Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso.
Journal of the Royal Statistical Society 58, 1 (1996), 267–288.

[108] Pinar Tözün and Helena Kotthaus. 2019. Scheduling Data-Intensive Tasks on
Heterogeneous Many Cores. IEEE Data Eng. Bull. 42, 1 (2019), 61–72.

[109] TPC. 2022. TPCx-AI Specification, Version 1.0.2. https://www.tpc.org/tpc_
documents_current_versions/pdf/tpcx-ai_v1.0.2.pdf Accessed: 2022-07-11.

[110] Paroma Varma and Christopher Ré. 2018. Snuba: AutomatingWeak Supervision
to Label Training Data. PVLDB 12, 3 (2018), 223–236.

[111] William N. Venables and Brian D. Ripley. 2002. Modern applied statistics with S,

4th Ed. Springer.
[112] Florian Wolf, Iraklis Psaroudakis, Norman May, Anastasia Ailamaki, and Kai-

Uwe Sattler. 2015. Extending database task schedulers for multi-threaded
application code. In SSDBM. 25:1–25:12.

[113] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G.
Parameswaran. 2018. Helix: Holistic Optimization for Accelerating Iterative
Machine Learning. PVLDB 12, 4 (2018), 446–460.

[114] Doris Xin, Hui Miao, Aditya G. Parameswaran, and Neoklis Polyzotis. 2021.
Production Machine Learning Pipelines: Empirical Analysis and Optimization
Opportunities. In SIGMOD. 2639–2652.

[115] Lan Yi and Jinquan Dai. 2013. Experience from Hadoop Benchmarking with
HiBench: From Micro-Benchmarks Toward End-to-End Pipelines. In WBDB.
43–48.

[116] Lele Yu, Yingxia Shao, and Bin Cui. 2015. Exploiting Matrix Dependency for
Efficient Distributed Matrix Computation. In SIGMOD. 93–105.

[117] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. 2019. Meta-World: A Benchmark and Evaluation for
Multi-Task and Meta Reinforcement Learning. In CoRL. 1094–1100.

[118] Matei Zaharia et al. 2012. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In NSDI. 15–28.

[119] Matei Zaharia et al. 2018. Accelerating the Machine Learning Lifecycle with
MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45.

[120] Ce Zhang, Arun Kumar, and Christopher Ré. 2014. Materialization optimizations
for feature selection workloads. In SIGMOD. 265–276.

2938

https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
https://scikit-learn.org/stable/modules/preprocessing.html
https://spark.apache.org/docs/latest/ml-features
https://apache.github.io/systemds/site/dml-language-reference
https://apache.github.io/systemds/site/dml-language-reference
https://www.nltk.org/index.html
https://www.tensorflow.org/api_docs/python/tf/feature_column
https://www.tensorflow.org/api_docs/python/tf/feature_column
https://www.tensorflow.org/api_docs/python/tf/keras/layers/StringLookup
https://www.tensorflow.org/api_docs/python/tf/keras/layers/StringLookup
https://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-ai_v1.0.2.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-ai_v1.0.2.pdf

