
On Repairing Timestamps for Regular Interval Time Series
Chenguang Fang

BNRist, Tsinghua University
fcg19@mails.tsinghua.edu.cn

Shaoxu Song
BNRist, Tsinghua University
sxsong@tsinghua.edu.cn

Yinan Mei
BNRist, Tsinghua University
myn18@mails.tsinghua.edu.cn

ABSTRACT
Time series data are often with regular time intervals, e.g., in IoT
scenarios sensor data collected with a pre-specified frequency, air
quality data regularly recorded by outdoor monitors, and GPS sig-
nals periodically received from multiple satellites. However, due to
various issues such as transmission latency, device failure, repeated
request and so on, timestamps could be dirty and lead to irregular
time intervals. Amending the irregular time intervals has obvious
benefits, not only improving data quality but also leading to more
accurate applications such as frequency-domain analysis and more
effective compression in storage. The timestamp repairing problem
however is challenging, given many interacting factors to deter-
mine, including the time interval, the start timestamp, the series
length, as well as the matching between the time series before and
after repairing. Our contributions in this paper are (1) formalizing
the timestamp repairing problem for regular interval time series
to minimize the cost w.r.t. move, insert and delete operations; (2)
devising an exact approach with advanced pruning strategies based
on lower bounds of repairing; (3) proposing an approximation based
on bi-directional dynamic programming. The experimental results
demonstrate the superiority of our proposal in both timestamp re-
pair accuracy and the aforesaid applications. Remarkably, the repair
results can be used to evaluate time series data quality measures.
Both the repair and measure functions have been implemented in
an open-source time series database, Apache IoTDB.

PVLDB Reference Format:
Chenguang Fang, Shaoxu Song, and Yinan Mei. On Repairing Timestamps
for Regular Interval Time Series. PVLDB, 15(9): 1848 - 1860, 2022.
doi:10.14778/3538598.3538607

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fangfcg/regular-interval-repair.

1 INTRODUCTION
Large amounts of time series are often with regular time intervals,
e.g., in IoT scenarios, sensor data collected periodically [21], air
quality data regularly recorded by outdoor monitors [32], and GPS
signals periodically received frommultiple satellites [9]. The devices
are often programmed to collect data in a pre-specified frequency.
Such regular interval time series reflects not only the trend of the
values, but also makes it easier for analysis and storage.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.
doi:10.14778/3538598.3538607

900

1000

Engine-speed(rpm)

04:31:36 04:36:36
(a) delayed

900

1000

Engine-speed(rpm)

04:31:36 04:36:36
(b) moved

1100

1800

Engine-torque(N·m)

00:06:50
(c) missing

00:01:50

1100

1800

Engine-torque(N·m)

00:06:50
(d) inserted

00:01:50

57

64

Speed(km/h)

23:23:33
(e) repeated

23:23:28

60s60s

60s 60s

57

64

Speed(km/h)

23:23:33
(f) deleted

23:23:28

Figure 1: Real vehicle data suffering from irregular time
intervals, where dark blue points are (a) delayed / (b) moved,
(c) missing / (d) inserted, and (e) repeated / (f) deleted. While
points in (g) are largely collected with time intervals about
60s, the most likely time interval of (h) is unclear.

1.1 Irregular Time Interval by Dirty Timestamp
Owing to various issues illustrated below, timestamps could be
imprecise, and thereby lead to irregular time intervals in time series.

(1) Transmission latency. IoT data are often transmitted from
sensors with no clocks installed, and timestamped till they are
received by the terminal (clock enabled). Due to the instability of
network latency, often non-constant, as illustrated in Figure 1(a), the
data regularly generated in sensors can be timestamped irregularly,
thereby leading to irregular intervals with timestamp shifts [22].

(2) Missing observations. Even worse, due to transmission errors
[27] or device failures such as broken sensors, the data could also
be missing, as shown in Figure 1(b). It is worth noting that most
sensors are stateless, and thus using a simple counter as clock is
not an option and imprecise due to the missing points.

(3) Repeated requests. Data transmission mechanisms such as
Automatic Repeat reQuest (ARQ) [24] may send packets repeatedly
over an unreliable communication channel, to achieve reliable data

1848

https://doi.org/10.14778/3538598.3538607
https://github.com/fangfcg/regular-interval-repair
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3538598.3538607
https://www.acm.org/publications/policies/artifact-review-and-badging-current

transmission. However, overly repeated transmissions might result
in redundant points in a short period, e.g., in Figure 1(c).

The proposal repairs all the cases including delayed, missing and
repeated points, by moving as well as inserting and deleting.

Example 1 (Real Vehicle Scenario). In our partner company, a
heavy machine maintenance service provider, each vehicle installs
at least 13 free-running sensors, monitoring engine speed, tem-
perature, etc. These sensors do not have their own clocks, instead,
sending data directly to the data bus installed in the terminal of the
vehicle. The terminal runs Linux with a clock. Each data is then
timestamped when the terminal collects it from the bus.

Figure 1 illustrates three examples of irregular interval time
series in (a), (c) and (e) from the aforesaid vehicle scenario, and their
corresponding repairs in (b), (d) and (f), respectively. Figure 1(g)
presents the time intervals of consecutive data points of Engine-
speed. While the time intervals could vary significantly, most of
them are about 60s. However, owing to the extremely noisy data,
the interval of the Speed data in Figure 1(h) is unclear (1s or 2s).

Handling irregular time intervals is meaningful not only in busi-
ness (OT) but also in data management (IT). Experiments on some
case studies in Section 6.3 show that handling irregular time inter-
vals enables FFT analysis and improves storage space.

For example, to predict vehicle fuel consumption, machine learn-
ing models are applied, which often take regular interval time series
as input, such as LSTM [16, 33]. Likewise, to detect abnormal engine
behaviors, e.g., rotational axis deviation, frequency-domain analysis
techniques are employed, such as Fast Fourier Transform (FFT) [25],
again requiring regular interval time series. The cases of delayed,
missing and repeated points lead to irregular time intervals, and
thus obscure these learning and analysis models performing.

Moreover, to efficiently store time series data, delta-like encoding
and compression techniques are often employed, e.g., in Apache
IoTDB [1]. The idea is to store the deltas of consecutive points, often
small and repetitive, rather than the original large timestamps and
values. The irregular time intervals lead to large and non-repetitive
deltas, degrading the encoding and compression performance.

Indeed, detecting these interacting events is highly non-trivial,
e.g., whether a point is delayed or repeated. It needs a holistic
consideration of possible cases, which does not only detect the
events but also outputs the possible repairs as a by-product. The
result in a form of (∗, 𝑠 𝑗) or (𝑡𝑖 , ∗) or (𝑡𝑖 , 𝑠 𝑗) denotes that a point is
missing at 𝑠 𝑗 , or repeated at 𝑡𝑖 , or delayed from 𝑠 𝑗 to 𝑡𝑖 , respectively.
After handling irregular time intervals to regular ones, value repair
is then conducted, which is not the focus of this study. Experiments
in Section 6.4 show how this proposal works together with value
repair and jointly contributes to the FFT analysis in Section 6.3.■

1.2 Repairing for Regular Interval Time Series
In this paper, we mainly detect and repair the data quality issues in
timestamps, leading to delayed, missing and repeated points. While
moving a delayed point changes only timestamp but not its value,
deleting a repeated point does not need to handle the value either.
However, for inserting a missing point, both its timestamp and
value should be repaired. Note that missing value imputation has
been extensively studied [19, 23]. Thereby, we focus on repairing

the timestamps of the missing points and apply the existing value
imputation after timestamp repairing as illustrated in Section 6.4.

The challenge of repairing timestamps for regular interval time
series is due to the followingmultiple interacting factors. (1)Match-
ing. The matching between the time series before and after repair-
ing with the minimum distance. (2) Start. The start of the time
series, which could involve dirty timestamps as well. (3) Length.
Taking missing and redundant points into consideration, it is diffi-
cult to determine the length of the repaired time series. (4) Interval.
While the data collection frequency may be curated as metadata in
some scenarios (e.g., every 7s for Wind Turbine), precisely deter-
mining the real time interval could also be difficult especially when
the timestamps are extremely noisy, as shown in Figure 1(h).

1.3 Contributions
Our major contributions are summarized as follows.

(1) We formalize the timestamp repairing problem for regular
interval time series to minimize the cost of move, insert and delete
operations. The determinations of interval, start and length in reg-
ular interval time series are considered as sub-problem (Section 2).

(2) We devise an exact approach based on dynamic programming,
to find the matching between irregular and regular interval time
series with the minimum distance cost, as well as determine the
length of regular interval time series. Remarkably, we prove the
lower bounds of the repair cost in terms of the interval and the
start, therefore developing advanced pruning strategies (Section 3).

(3) An approximation algorithm is devised based on bi-directional
dynamic programming, significantly reducing time cost (Section 4).

(4) We conduct comprehensive evaluations against various exist-
ing methods, in both repaired timestamps and downstream tasks,
e.g., frequency-domain analysis and data compression (Section 6).

Our approach is implemented as a function timestamprepair
in an open-source time series database, Apache IoTDB [1, 2], to-
gether with three data quality measures, including timeliness,
completeness and consistency. All the proofs can be found in [3].

2 PROBLEM STATEMENT
In this section, we first introduce the definition of regular interval
time series, and then formalize the repair problem.

2.1 Preliminaries
Definition 1 (Regular Interval Time Series). A regular interval time
series is the time series with regular time intervals of consecutive data
points. For a regular interval time series s, we use {𝑠0, 𝑠1, . . . , 𝑠𝑚−1}
to denote the timestamps, where 𝑠𝑖 is the timestamp of the 𝑖-th data
point. Since the intervals of consecutive timestamps are regular, we
have 𝑠𝑖 = 𝑠0 + 𝑖 · 𝜖𝑇 , 𝑖 = 0, 1, . . . ,𝑚 − 1, where 𝑠0 is the start, 𝜖𝑇 is the
time interval and𝑚 is the length.

Consider a time series t with timestamps {𝑡0, 𝑡1, . . . , 𝑡𝑛−1} of size
𝑛, where 𝑡𝑖 is the timestamp of the 𝑖-th value. Since the intervals (i.e.,
{𝑡𝑖 − 𝑡𝑖−1 | 𝑖 = 1, 2, . . . , 𝑛 − 1}) of tmight not be regular, we propose
to repair the original time series t into a regular interval time series
s, while trying to minimize the change as in data repairing [20].

The length 𝑛 of the original time series t is a part of the input
t, whereas the length𝑚 of the target regular interval time series

1849

s could either be specified by the input (if known already) as in
Problem 2 or determined by Algorithm 1 as in Problem 3.

2.2 Repair Problem
To repair the time series, three repair operations are introduced,
including move, insert and delete, corresponding to the data qual-
ity issues of delayed points, missing points and repeated points
introduced in Figure 1. We use Figure 2(d) to outline the operations.

Definition 2 (Move Cost). Move cost refers to the cost of modification
of the timestamp, i.e., move an original timestamp 𝑡𝑖 in t to another
timestamp 𝑠 𝑗 in s, denoted by Δ𝑚 (𝑡𝑖 , 𝑠 𝑗) = |𝑡𝑖 − 𝑠 𝑗 |.

Definition 3 (Insert Cost). Insert cost refers to the cost of insert-
ing new timestamps, i.e., impute missing timestamps. Since the new
timestamp will be directly introduced into s, we define insert cost as
Δ𝑎 (𝑠 𝑗) = 𝜆𝑎, where 𝜆𝑎 is a given constant.

Definition 4 (Delete Cost). Delete cost refers to the cost of deleting
timestamps in t, denoted by Δ𝑑 (𝑡𝑖) = 𝜆𝑑 , where 𝜆𝑑 is a given constant.

We then define a match, to denote the mapping relationship from
original sequence t to the target regular interval sequence s.

Definition 5 (Match). A match is a set of point pairs from the origi-
nal time series t to the target regular interval time series s. Since we al-
low move, insert and delete operations, a match is defined based on the
aforesaid three operations,𝑀 = {(𝑥,𝑦) | 𝑥 ∈ {𝑡0, 𝑡1, . . . , 𝑡𝑛−1, ∗}, 𝑦 ∈
{𝑠0, 𝑠1, . . . , 𝑠𝑚−1, ∗}}, where (𝑡𝑖 , 𝑠 𝑗), (𝑡𝑖 , ∗), (∗, 𝑠 𝑗) denote the move,
delete and insert operations, respectively. All the timestamps in t
and s should be included only once in𝑀 , which ensures𝑀 a complete
mapping relationship from t to s without any overlapping.

Finally, the repair cost of the problem is defined based on the
original time series t, target time series s and the match𝑀 .

Definition 6 (Repair Cost). Given t, s and a match 𝑀 , the repair
cost comprises move cost, delete cost and insert cost from t to s.

Δ(t, s, 𝑀) =
∑︁

(𝑡𝑖 ,𝑠 𝑗) ∈𝑀
Δ𝑚 (𝑡𝑖 , 𝑠 𝑗) +

∑︁
(𝑡𝑖 ,∗) ∈𝑀

Δ𝑑 (𝑡𝑖) +
∑︁

(∗,𝑠 𝑗) ∈𝑀
Δ𝑎 (𝑠 𝑗)

=
∑︁

(𝑡𝑖 ,𝑠 𝑗) ∈𝑀
|𝑡𝑖 − 𝑠 𝑗 | +

∑︁
(𝑡𝑖 ,∗) ∈𝑀

𝜆𝑑 +
∑︁

(∗,𝑠 𝑗) ∈𝑀
𝜆𝑎

Following the minimum data repairing principle [20], we aim to
minimize the repair cost by finding a proper regular interval time
series s as the target for repairing.

Problem 1 (Regular Interval Time Series Repair). Given an original
time series t of size 𝑛, with timestamps {𝑡0, 𝑡1, . . . , 𝑡𝑛−1}, the Regu-
lar Interval Time Series Repair problem is to find a regular interval
time series s and a match 𝑀 such that the repair cost Δ(t, s, 𝑀) is
minimized, i.e., s, 𝑀 = argmins,𝑀 Δ(t, s, 𝑀)

In the repair problem, given the original time series t of size 𝑛 as
input, we do not have any assumptions on knowing the positions
(e.g., the 𝑖-th points) of the missing, delayed and duplicate values.

2.3 Sub-Problems
In this section, by considering sub-problems of Problem 1, the
solutions are decoupled, and thus applied to various scenarios. We
first consider the most specific scenario, when the interval 𝜖𝑇 , the

Table 1: Relationship of the sub-problems

Sub-problem Input factors Target factors

Match Searching 𝜖𝑇 , 𝑠0,𝑚 𝑀

Length Determination 𝜖𝑇 , 𝑠0 𝑚, and also𝑀
Start Determination 𝜖𝑇 𝑠0, and also𝑚,𝑀

Interval Determination − 𝜖𝑇 , and also 𝑠0,𝑚,𝑀

!

"

!

#!

(a) Interval Determination

$"

"

(b) Start Determination

(c) Length Determination

(d) Match Searching
%

&

" "

move

insert

delete

Figure 2: The sub-problems and pipeline from the input time
series t to the regular interval time series s.

start 𝑠0 and the length𝑚 of s are all acquired. Intuitively, given 𝜖𝑇 ,
𝑠0 and𝑚, the target s should have been uniquely determined. There
should be a match𝑀 for each point from t to s that minimizes the
repair cost. The Match Searching problem is thus to find such𝑀 .

Problem 2 (Match𝑀 Searching). Given a time series t and a regular
interval time series s, the Match Searching problem is to find a match
𝑀 that minimizes the repair cost Δ(t, s, 𝑀), i.e.,

𝑀 = argmin
𝑀

Δ(t, s, 𝑀)

= argmin
𝑀

∑︁
(𝑡𝑖 ,𝑠 𝑗) ∈𝑀

|𝑡𝑖 − 𝑠 𝑗 | +
∑︁
(𝑡𝑖 ,∗) ∈𝑀

𝜆𝑑 +
∑︁

(∗,𝑠 𝑗) ∈𝑀
𝜆𝑎

Next, we generalize the scenario when the interval 𝜖𝑇 and start
𝑠0 are known. The problem is thus to determine the length𝑚 of s.

Problem 3 (Length𝑚 Determination). Given an original time series
t, the interval 𝜖𝑇 and the start 𝑠0 of the target time series s, the Length
Determination problem is to find the best length𝑚∗ of s, such that
the repair cost Δ(t, s, 𝑀) can be minimized.

We further generalize the problem by giving only the interval
𝜖𝑇 , while both the length𝑚 and the start 𝑠0 are unknown. The Start
Determination problem is thus to find the optimal start for s, which
can be solved by finding the optimal length 𝑚 for each possible
start 𝑠0, calling the solutions of Problem 3 Length Determination.

Problem 4 (Start 𝑠0 Determination). Given an original time series t
and the interval 𝜖𝑇 of the target time series s, the Start Determination

1850

problem is to find the best start 𝑠∗0 of s, such that the repair cost
Δ(t, s, 𝑀) can be minimized.

Finally, we consider the general scenario when the interval 𝜖𝑇 is
not given either (owing to the reasons in Section 1). The Interval
Determination is to find the optimal interval for s, and again can
be solved by finding the best start 𝑠0 for all possible intervals 𝜖𝑇 ,
calling the solutions of Problem 4 Start Determination.

Problem 5 (Interval 𝜖𝑇 Determination). Given an original time
series t, the Interval Determination problem is to find the interval 𝜖∗

𝑇
of s, such that the repair cost Δ(t, s, 𝑀) can be minimized.

Figure 2 illustrates the order of determining the parameters,
while Table 1 highlights the input and output of the sub-problems.
Given an input time series t, to repair it to a regular interval time
series s, Interval Determination (Problem 5) first computes the in-
terval 𝜖𝑇 of s. Next, Start Determination (Problem 4) determines its
start 𝑠0. Then, Length Determination (Problem 3) finds the optimal
length𝑚 for s according to the interval and start. Finally, Match
Searching (Problem 2) find the match𝑀 from t to s.

The reason for determining the match from t to s at the bottom
is that it replies on a known s with 𝜖𝑇 , 𝑠0,𝑚 determined. Since the
optimal length𝑚 could be found together with the match as shown
in Algorithm 1, Length Determination is thus the step before Match
Searching. For 𝜖𝑇 and 𝑠0, we choose to determine the interval 𝜖𝑇
first, since the start 𝑠0 could be efficiently pruned by the interval
according to Corollary 7.

3 EXACT METHOD
In this section, according to the different scenarios and sub-problems
defined in Section 2, we devise corresponding solutions.

3.1 Match Searching
3.1.1 Match Searching Algorithm. Referring to Definitions 5 and 6
of match and repair cost, we devise a polynomial-time algorithm
based on dynamic programming for the match searching problem.

Let t[𝑖] denote the subsequence {𝑡0, 𝑡1, . . . , 𝑡𝑖−1} of sequence
t, i.e., the first 𝑖 items in t, and analogously, let s[𝑗] denote the
subsequence {𝑠0, 𝑠1, . . . , 𝑠 𝑗−1} of sequence s. We will introduce the
state transition equation for the dynamic programming algorithm.

Let 𝑑𝑝 (𝑖, 𝑗) denote the minimum repair cost from time series t[𝑖]
to s[𝑗] , we have the following state transition equation

𝑑𝑝 (𝑖, 𝑗) ← min(𝑑𝑝 (𝑖 − 1, 𝑗 − 1) + Δ𝑚 (𝑡𝑖−1, 𝑠 𝑗−1), (1)
𝑑𝑝 (𝑖, 𝑗 − 1) + Δ𝑎 (𝑠 𝑗−1),
𝑑𝑝 (𝑖 − 1, 𝑗) + Δ𝑑 (𝑡𝑖−1))

where Δ𝑚 , Δ𝑎 and Δ𝑑 are move, insert and delete costs, respectively.
The state transition equation minimizes the cost among the three
possible cases of move, insert and delete operations in matching.

Proposition 1. The state transition equation 𝑑𝑝 (𝑖, 𝑗) in Formula 1
gives the minimum repair cost from subseries t[𝑖] to s[𝑗] .

Algorithm 1 shows the procedure of Match Searching. Dynamic
programming (Lines 8-12) is conducted according to Formula 1.
After finding the minimum cost, we then traceback to find the
match𝑀 by Algorithm 2.

Algorithm 1: match searching (t, 𝜖𝑇 , 𝑠0)
Input: original time series t, time interval 𝜖𝑇 , start 𝑠0
Output: the match𝑀 from t to s, the length𝑚∗ of s

1 𝑛 ← 𝐿𝑒𝑛𝑔𝑡ℎ(t) ;
2 init 𝐷𝑃 [𝑛] [∗], 𝑂𝑃 [𝑛] [∗],𝑉 [𝑛] [∗] // record dp results,

operations & value state;
3 𝐷𝑃 [0] [0] ← 0, 𝐷𝑃 [0] [𝑝] ← 𝑝𝜆𝑎 , 𝐷𝑃 [𝑞] [0] ← 𝑞𝜆𝑑 ;
4 𝑚∗,𝑚𝑢𝑏 ,𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ← +∞;
5 𝑚 ← 1;
6 while𝑚 ≤ 𝑚𝑢𝑏 do
7 for 𝑖 ← 1 to 𝑛 do
8 Update 𝐷𝑃 [𝑖] [𝑚] according to Formula 1;
9 if |𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 | ≥ 2 then
10 choose 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 with the largest 𝑉 [𝑖] [𝑚];
11 Update 𝑉 [𝑖] [𝑚] according to Formulas 2-4;
12 𝑂𝑃 [𝑖] [𝑚] ← 0/1/2 //0: move, 1: insert, 2: delete ;
13 if 𝐷𝑃 [𝑛] [𝑚] < 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 then
14 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡,𝑚∗ ← 𝐷𝑃 [𝑛] [𝑚],𝑚;
15 𝑚𝑢𝑏 ← ⌊𝑚𝑖𝑛_𝑐𝑜𝑠𝑡

𝜆𝑎
+ 𝑛⌋ ;

16 𝑚 ←𝑚 + 1
17 𝑀 ← traceback(𝑂𝑃 [𝑛] [𝑚∗], t, s[𝑚∗]);
18 return𝑀,𝑚∗;

3.1.2 Using Data Characteristics. Note that Algorithm 1 may find
more than one match with the minimum repair costs. Intuitively,
the characteristics of the data values may help in making a further
decision. Figure 3(a) gives an example of searching for the match
𝑀 . Given 𝑠 𝑗 − 𝑡𝑖 = 𝑡𝑖+1 − 𝑠 𝑗 = 𝜎 , deleting any of them and moving
the other to 𝑠 𝑗 have the same repair costs. However, in Figure 3(b),
𝑣𝑖−1 = 𝑣𝑖 indicates that 𝑣𝑖 is probably the repeated point and needs
to be deleted, where 𝑣𝑖−1 and 𝑣𝑖 are the data values of t at 𝑡𝑖−1 and
𝑡𝑖 , respectively.

Formally, let v = {𝑣0, 𝑣1, · · · , 𝑣𝑛−1} be the values for the input
time series t, where 𝑣𝑖 is the corresponding data value at timestamp
𝑡𝑖 . To employ data values for deciding match, we first construct
the value state matrix 𝑉 of size 𝑛 × 𝑚, updating together with
the dynamic state 𝑑𝑝 in Formula 1. By considering the three data
quality issues in the value domain, the updating of 𝑉 is introduced
as follows:

(a) For the delayed point, let (𝑡𝑖 , 𝑠 𝑗) denote the corresponding
move operation, and 𝛿𝑣𝑖 = |𝑣𝑖 − 𝑣𝑖−1 | be the value fluctuation at 𝑡𝑖 .
Intuitively, a delayed 𝑡𝑖 should affect both the value fluctuations
before and after it. That is, the value fluctuations 𝛿𝑣𝑖 and 𝛿𝑣𝑖+1 before
and after 𝑡𝑖 are supposed to be close. We thus update 𝑉 (𝑖, 𝑗) as

𝑉 (𝑖, 𝑗) = 𝑉 (𝑖 − 1, 𝑗 − 1) +
min(𝛿𝑣𝑖 , 𝛿𝑣𝑖+1)
max(𝛿𝑣𝑖 , 𝛿𝑣𝑖+1)

. (2)

(b) For the repeated point, the data values are probably the same
as the values before them. Let (𝑡𝑖 , ∗) denote the corresponding
delete operation, we update 𝑉 (𝑖, 𝑗) as

𝑉 (𝑖, 𝑗) =
{
𝑉 (𝑖, 𝑗 − 1) + 1, 𝛿𝑣𝑖 = 0
𝑉 (𝑖, 𝑗 − 1), 𝛿𝑣𝑖 ≠ 0 (3)

1851

!

"

56

64

Speed(km/h)

(b) Value Domain

(a) Time Domain

#
$! $!"#$!$#

!!"#

%%

!!$# " !!

%%$# %%"#

(c) State Transition (&')

#$%& '() * ' (+ #$ &) * ' (

#$ &) * #$ &, () *

%%%%$# %%"#

-% ' .!" /

0&

#
$!"&

(d) State Transition (()

1%& ' () * '(+ 1 &) * '(

1 &) * 1 & , () *
!! 2' !!$#

!!"#' !!
" 3

(%!! " !!$#+

3%!!"# 4 !!+

!!"'2' !!"#

!!"#'!!
" (

0&

.!"#' -% " /

$! $!"#

Figure 3: Example of using values for deciding the match

(c) For the missing point, let (∗, 𝑠 𝑗) denote the corresponding
insert operation, and 𝑡𝑙𝑠 𝑗 , 𝑡

𝑟
𝑠 𝑗

be the closest timestamps before and
after 𝑠 𝑗 . Since 𝑠 𝑗 is missing in t, 𝑡𝑙𝑠 𝑗 and 𝑡𝑟𝑠 𝑗 skipping one point
probably have a larger value fluctuation. We thus update 𝑉 (𝑖, 𝑗) as

𝑉 (𝑖, 𝑗) =
{

𝑉 (𝑖, 𝑗 − 1) + 1, |𝑣𝑙𝑠 𝑗 − 𝑣
𝑟
𝑠 𝑗
| ≥ 𝛿

𝑎𝑣𝑔
𝑣

𝑉 (𝑖, 𝑗 − 1), |𝑣𝑙𝑠 𝑗 − 𝑣
𝑟
𝑠 𝑗
| < 𝛿

𝑎𝑣𝑔
𝑣

. (4)

where 𝛿𝑎𝑣𝑔𝑣 is the average of 𝛿𝑣1 , · · · , 𝛿𝑣𝑛−1 .
If the match searching algorithm finds more than one choice of

the minimum costs, the one with larger𝑉 will be selected, and then
𝑉 will also be updated (Lines 9-11 in Algorithm 1). An example is
provided below to illustrate the process.

Example 2. Figures 3(c) and 3(d) give an example of updating
𝑑𝑝 (𝑖, 𝑗) and 𝑉 (𝑖, 𝑗), corresponding to the timestamps and values
in Figures 3(a) and 3(b). For 𝑑𝑝 (𝑖 + 1, 𝑗), the algorithm computes
𝑑𝑝 (𝑖, 𝑗) + 𝜆𝑑 = 𝑑𝑝 (𝑖, 𝑗 − 1) + 𝜎 = 𝑑𝑝 (𝑖 − 1, 𝑗 − 1) + 𝜎 + 𝜆𝑑 , i.e., they
have the same repair costs. It thus computes 𝑉 (𝑖 + 1, 𝑗) updated
from 𝑉 (𝑖, 𝑗) and 𝑉 (𝑖, 𝑗 − 1), respectively. Figure 3(d) shows that
𝑉 (𝑖, 𝑗) + 0 = 𝑉 (𝑖 − 1, 𝑗 − 1) + 0 < 𝑉 (𝑖, 𝑗 − 1) + 1 = 𝑉 (𝑖 − 1, 𝑗 − 1) + 2.
𝑉 (𝑖 + 1, 𝑗) is thus chosen to be updated from 𝑉 (𝑖, 𝑗 − 1), i.e., 𝑡𝑖 is
deleted and 𝑡𝑖+1 is moved to 𝑠 𝑗 . ■

3.1.3 Complexity Analysis. For each possible length𝑚, our match
searching (Algorithm 1) updates 𝑛 elements in the state matrix
𝐷𝑃 . Referring to Lemma 2, the upper bound of𝑚 is depended on
𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 . Since the worst case of the cost is to delete all the points,
we have 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ≤ 𝑛𝜆𝑑 . In practice, we usually set 𝜆𝑑 = 𝜆𝑎 ,
i.e., the same cost for insertion and deletion, as discussed in the
parameter selection in Section 3.4.4. According to Lemma 2, we
have𝑚 ≤ (𝜆𝑑

𝜆𝑎
+ 1)𝑛 = 2𝑛. Traceback (Algorithm 2) employed in

Algorithm 1 is conducted (𝑛 +𝑚∗) times to find match 𝑀 . Since
𝑚∗ ≤ 𝑚𝑢𝑏 = 2𝑛, Algorithm 2 thus runs in 𝑂 (𝑛) time. Therefore,
Algorithm 1 runs in 𝑂 (𝑛2) time.

3.2 Length Determination
After proposing the solution for Match Searching problem, wemove
to the determination of length𝑚 for s, when the interval 𝜖𝑇 and
the start 𝑠0 are both known, i.e., Problem 3.

To enable pruning, we propose an upper bound of𝑚∗, based on
an arbitrary computed cost.

Algorithm 2: traceback (𝑂𝑃 [𝑛] [𝑚], t, s)
Input: operation matrix 𝑂𝑃 [𝑛] [𝑚], original time series t,

target regular interval time series s
Output: the match𝑀 recorded by the operation matrix

1 𝑛,𝑚 ← 𝐿𝑒𝑛𝑔𝑡ℎ(t), 𝐿𝑒𝑛𝑔𝑡ℎ(s);
2 𝑖 ← 𝑛 − 1, 𝑗 ←𝑚 − 1 ;
3 𝑀 ← ∅;
4 while 𝑖 ≥ 0 and 𝑗 ≥ 0 do
5 if 𝑂𝑃 [𝑖] [𝑗] == 0 then
6 𝑀 ← {(𝑡𝑖 , 𝑠 𝑗)} ∪𝑀 ;
7 𝑖 ← 𝑖 − 1, 𝑗 ← 𝑗 − 1;
8 else if 𝑂𝑃 [𝑖] [𝑗] == 1 then
9 𝑀 ← {(∗, 𝑠 𝑗)} ∪𝑀 ;

10 𝑗 ← 𝑗 − 1;
11 else
12 𝑀 ← {(𝑡𝑖 , ∗)} ∪𝑀 ;
13 𝑖 ← 𝑖 − 1;
14 return𝑀 ;

Lemma 2. Suppose that we have a repair for t to a regular interval
time series s with repair cost 𝑐 , the upper bound of𝑚 is computed as:

𝑚∗ ≤ ⌊ 𝑐
𝜆𝑎
+ 𝑛⌋ (5)

To find the optimal length𝑚, the method needs to enumerate all
possible𝑚 values under the bound proposed in Lemma 2. Indeed, to
make the enumeration practical, we update the repair cost 𝑐 as well
as the corresponding bound in Lemma 2, when a smaller cost is
obtained, in Line 15 in Algorithm 1. That is, the bound dynamically
decreases during the process of enumerating𝑚.

3.3 Start Determination
As discussed before Problem 4, to find the best start 𝑠∗0 given the
interval 𝜖𝑇 , we can call the solution in Section 3.2, i.e., Algorithm 1,
to find the optimal length𝑚 and match𝑀 for each possible start 𝑠0
and return the one with the minimum repair cost.

In this subsection, we first give a simple bound for 𝑠∗0 , and further
restrict it in Section 3.4, by combining the overall bound for cost.

Lemma 3. Given the original time series t of length𝑛 and the interval
𝜖𝑇 of the regular interval time series s, the start 𝑠∗0 of s satisfies
𝑡0 − (𝜆𝑎 + 𝜆𝑑) ≤ 𝑠∗0 ≤ 𝑡𝑛−1.

3.4 Interval Determination
When all the factors are unknown, as introduced in Problem 5,
we need to determine the 𝜖𝑇 first. In this section, we propose a
lower bound of cost w.r.t. the interval, to reduce the time cost of
determining 𝜖𝑇 by pruning.

3.4.1 Bound for the Cost. We introduce two properties of the min-
imum match, based on which a bound for the cost is derived.

Lemma 4 (Properties of the Minimum Cost). Given the original
time series t and target regular interval time series s, let the match𝑀
from t to s generate the minimum cost, and 𝜆𝑎, 𝜆𝑑 ≥ 𝜖𝑇 . Consider a
subsequence of𝑀 that includes all the move operations in time order,

1852

denoted as 𝑀𝑚 = {(𝑡𝑚0 , 𝑠𝑚0), (𝑡
𝑚
1 , 𝑠𝑚1), . . . (𝑡

𝑚
𝑝 , 𝑠𝑚𝑝)} ⊆ 𝑀 of size 𝑝 ,

we have the following properties for𝑀 :
(1) For any adjacent move operations (𝑡𝑚

𝑖
, 𝑠𝑚
𝑖
), (𝑡𝑚

𝑖+1, 𝑠
𝑚
𝑖+1) ∈ 𝑀

𝑚 ,
there does not exist an insert operation (∗, 𝑠𝑏) and a delete operation
(𝑡𝑎, ∗) that both in this period of time, i.e., ∄(∗, 𝑠𝑏), (𝑡𝑎, ∗) ∈ 𝑀, (𝑡𝑚

𝑖
<

𝑡𝑎 < 𝑡𝑚
𝑖+1) ∧ (𝑠

𝑚
𝑖

< 𝑠𝑏 < 𝑠𝑚
𝑖+1).

(2) There is no insert operation before (𝑡𝑚0 , 𝑠𝑚0) or after (𝑡
𝑚
𝑝 , 𝑠𝑚𝑝),

i.e., ∀(∗, 𝑠𝑏) ∈ 𝑀, 𝑠𝑚0 < 𝑠𝑏 < 𝑠𝑚𝑝 and ∀(𝑡𝑎, ∗) ∈ 𝑀, 𝑡𝑚0 < 𝑡𝑎 < 𝑡𝑚𝑝 .

Proof sketch. (1) Let insert and delete operations (∗, 𝑠𝑏), (𝑡𝑎, ∗) ∈ 𝑀
be in the same period between (𝑡𝑚

𝑖
, 𝑠𝑚
𝑖
), (𝑡𝑚

𝑖+1, 𝑠
𝑚
𝑖+1) ∈ 𝑀

𝑚 . Without
loss of generality, we assume 𝑠𝑏 < 𝑡𝑎 (otherwise, we can reverse
the sequences). Then we consider two scenarios:

(1.a) If 𝑡𝑎 < 𝑠𝑚
𝑖+1, since 𝑠𝑏 < 𝑡𝑎 < 𝑠𝑚

𝑖+1 and s is the regular interval
time series, there must exist 𝑠𝑏 ≤ 𝑠𝑥 < 𝑠𝑚

𝑖+1 that |𝑠𝑥 −𝑡𝑎 | < 𝜖𝑇 and 𝑠𝑥
is a delete point. Therefore, we can safely replace (∗, 𝑠𝑥), (𝑡𝑎, ∗) with
(𝑡𝑎, 𝑠𝑥) which generates lower cost, since |𝑠𝑥 − 𝑡𝑎 | < 𝜖𝑇 < 𝜆𝑎 + 𝜆𝑑 ,
and it contradicts the minimal cost assumption.

(1.b) If 𝑡𝑎 ≥ 𝑠𝑚
𝑖+1, we therefore get 𝑠𝑚

𝑖+1 ≤ 𝑡𝑎 < 𝑡𝑚
𝑖+1, i.e., |𝑡𝑎 −

𝑠𝑚
𝑖+1 | < |𝑡

𝑚
𝑖+1−𝑠

𝑚
𝑖+1 |. That is, we can replace (𝑡

𝑚
𝑖+1, 𝑠

𝑚
𝑖+1) with (𝑡𝑎, 𝑠

𝑚
𝑖+1)

for lower cost, which also contradicts the assumption.
In summary, we prove that the insert and delete operations could

not appear simultaneously in adjacent move operations.
(2) If 𝑘 insert operations are at the start of the sequence, i.e,

(∗, 𝑠0), (∗, 𝑠1), . . . , (∗, 𝑠𝑘−1) ∈ 𝑀 , we can directly remove these in-
sert operations from𝑀 and move the start 𝑠0 to 𝑠𝑘 , thus reduce the
cost by 𝑘𝜆𝑎 , which contradicts the minimal cost assumption. ■

In short, the first condition emphasizes that the insert and delete
operations could not appear simultaneously in adjacent move oper-
ations, and the second condition ensures insert operations could
not appear at the start or the end of the sequence.

Proposition 5 (Overall Bound). Given a time series t and an interval
𝜖𝑇 of the target regular interval time series, for any s with interval
𝜖𝑇 and corresponding match𝑀 from t to s, if 𝜆𝑑 ≥ 𝜖𝑇 and 𝜆𝑎 ≥ 𝜖𝑇 ,
we have the bound for Δ(t, s, 𝑀) as follows:

Δ(t, s, 𝑀) ≥
∑𝑛−1
𝑖=1 min (|𝜖𝑇 − 𝜖𝑖 |, 𝜆𝑑)

2
where 𝜖𝑖 = 𝑡𝑖 − 𝑡𝑖−1.

Corollary 6 (Monotonicity of the Overall Bound). If |𝜖𝑇 − 𝜖𝑖 | ≤
𝜆𝑑 , 𝑖 = 1, 2, . . . , 𝑛−1, the bound

∑𝑛−1
𝑖=1 min (|𝜖𝑇 −𝜖𝑖 |,𝜆𝑑)

2 is monotonically
increasing when 𝜖𝑇 ≥ 𝜖𝑚𝑑 , and monotonically decreasing when
𝜖𝑇 ≤ 𝜖𝑚𝑑 , where 𝜖𝑚𝑑 = median(𝜖1, 𝜖2, . . . , 𝜖𝑛−1).

To find 𝜖𝑇 efficiently, we will start the traverse from 𝜖𝑚𝑑 and
increase or decrease it gradually, not exceeding the given bound.
Analogous to the dynamic bound for𝑚 in Section 3.2, the bound
for 𝜖𝑇 is also dynamically updated, based on the minimum cost.

3.4.2 Pruning Start by the Bound . Recall that we give a bound for
start in Lemma 3, which is loose to some extent, making it difficult
for traversal. After showing the bound for overall cost, the intuition
is to use the overall bound for pruning the traversal of the start.

Corollary 7 (Start Lower Bound). Given the original time series t,
and the interval 𝜖𝑇 of the target regular interval time series s, if the

Algorithm 3: exact regular interval repair RIR-Exact
Input: original time series t
Output: the interval 𝜖∗

𝑇
, the start 𝑠∗0 , the length𝑚

∗ of the
target sequence, the match𝑀

1 𝜖𝑙𝑖𝑠𝑡 ← {𝜖1, 𝜖2, . . . , 𝜖𝑛} ;
2 𝜖𝑇 ← median(𝜖𝑙𝑖𝑠𝑡);
3 𝑅𝑎𝑛𝑔𝑒 (𝜖𝑇) ← [−∞, +∞];
4 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ← +∞;
5 while 𝑅𝑎𝑛𝑔𝑒 (𝜖𝑇) is not empty do
6 𝑑 ← 0;

7 while 𝑑𝜆𝑑 +
∑𝑛−1

𝑖=𝑑+1 min (|𝜖𝑇 −𝜖𝑖 |,𝜆𝑑)
2 < 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 do

8 for 𝑡𝑑 − 𝜆𝑑 ≤ 𝑠0 ≤ 𝑡𝑑 + 𝜆𝑑 do
9 𝑀,𝑚, 𝑐𝑜𝑠𝑡 ← match searching(t, 𝜖𝑇 , 𝑠0) ;

10 if 𝑐𝑜𝑠𝑡 < 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡∗ then
11 𝑚∗,𝑚𝑖𝑛_𝑐𝑜𝑠𝑡, 𝑠∗0, 𝜖

∗
𝑇
←𝑚,𝑐𝑜𝑠𝑡, 𝑠0, 𝜖𝑇 ;

12 Update 𝑅𝑎𝑛𝑔𝑒 (𝜖𝑇) referring to Proposition 5;
13 𝑑 ← 𝑑 + 1;
14 Find another 𝜖𝑇 ∈ 𝑅𝑎𝑛𝑔𝑒 (𝜖𝑇);
15 return 𝜖∗

𝑇
, 𝑠∗0,𝑚

∗, 𝑀 ;

first 𝑑 points 𝑡0, 𝑡1, . . . , 𝑡𝑑 are deleted, i.e., (𝑡𝑖 , ∗) ∈ 𝑀, 𝑖 = 0, 1, . . . , 𝑑 ,
we have the following bound for the cost:

Δ(t, s, 𝑀) ≥ 𝑑𝜆𝑑 +
∑𝑛−1
𝑖=𝑑+1min (|𝜖𝑇 − 𝜖𝑖 |, 𝜆𝑑)

2
Corollary 8 (Monotonicity of the Start Lower Bound). Given the
original time series t, and the interval 𝜖𝑇 of the target regular interval
time series s, if the first 𝑑 points 𝑡0, 𝑡1, . . . , 𝑡𝑑 are deleted, the lower
bound of Δ(t, s, 𝑀) is monotonically increasing w.r.t. 𝑑 .

We therefore show the bound of delete points at the start of the
sequence. Given 𝑑 , 𝑠∗0 could be found around the true start in t. The
overall algorithm is presented in Algorithm 3.

3.4.3 Complexity Analysis. In the worst case, Algorithm 3 searches
all the possible 𝜖𝑇 less than 𝜆𝑎 and 𝜆𝑑 . For each 𝜖𝑇 , since𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ≤
𝑛𝜆𝑑 , and Line 7 ensures 𝑑𝜆𝑑 +

∑𝑛−1
𝑖=𝑑+1 min (|𝜖𝑇 −𝜖𝑖 |,𝜆𝑑)

2 < 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ≤
𝑛𝜆𝑑 , it repeats 𝑛 times at most. Moreover, Line 8 repeats 2𝜆𝑑 times.
Combining Lines 7-8, for each 𝜖𝑇 , it calls Algorithm 1 at most 2𝑛𝜆𝑑
times. That is, Algorithm 3 runs in 𝑂 (𝑛3𝜆2

𝑑
) time.

3.4.4 Determination of Parameters. To determine 𝜆𝑎 and 𝜆𝑑 , firstly,
since handling either missing or repeated points will change the
number of data points, an intuition is to set 𝜆𝑎 = 𝜆𝑑 . Otherwise,
the algorithm might be biased to delete or insert points. For sim-
plicity, we will use 𝜆 to represent 𝜆𝑎 and 𝜆𝑑 in the following. With
a too small 𝜆, the algorithm might excessively detect missing and
repeated points, since the costs of deletion and insertion are lower
than moving. On the other hand, with a too large 𝜆, it makes
the deletion and insertion difficult. In this sense, 𝜆 = 𝜖𝑚𝑎𝑥 =

max (𝜖1, 𝜖2, . . . , 𝜖𝑛−1), the maximum interval observed in the time
series could be a choice, making the costs of delete and insert oper-
ations larger than moving the most distant consecutive points. In
addition, Corollary 6 shows that if |𝜖𝑇 − 𝜖𝑖 | ≤ 𝜆, 𝑖 = 1, 2, . . . , 𝑛 − 1,
the bound

∑𝑛−1
𝑖=1 min (|𝜖𝑇 −𝜖𝑖 |,𝜆)

2 is monotonically increasing when

1853

𝜖𝑇 ≥ 𝜖𝑚𝑑 , and monotonically decreasing when 𝜖𝑇 ≤ 𝜖𝑚𝑑 . Since
𝜖𝑇 , 𝜖𝑖 ≤ 𝜖𝑚𝑎𝑥 , by setting 𝜆 = 𝜖𝑚𝑎𝑥 , we could derive |𝜖𝑇 − 𝜖𝑖 | ≤
𝜆, 𝑖 = 1, 2, . . . , 𝑛 − 1, and the monotonicity applies. Consequently,
Algorithm 3 could efficiently find the maximum and minimum val-
ues of 𝜖𝑇 according to the overall bound in Proposition 5. To this
end, we suggest 𝜆𝑎 = 𝜆𝑑 = 𝜆 = 𝜖𝑚𝑎𝑥 in practice.

4 APPROXIMATION METHOD
Motivated by the robustness of the median in handling noisy time
series data [29], we make two approximations to improve the effi-
ciency while trying to keep the accuracy.

4.1 Approximate Match Searching
Rather than costly enumerating each possible start as in Section 3.3,
we propose median approximation, directly regarding the median
timestamp of the original time series t as the median timestamp of
the target s, inspired by the robustness of median. As present below,
with this median approximation, we no longer need to traverse all
the possible starts for s.

4.1.1 Preliminaries. First, let us define the median point 𝑡𝑚𝑑 =

median{𝑡0, 𝑡1, . . . , 𝑡𝑚} for t. Let t𝐿[𝑖] , t
𝑅
[𝑖] denote the subsequence of

length 𝑖 on the left and right side of 𝑡𝑚𝑑 , i.e., before and after 𝑡𝑚𝑑 ,
respectively. Note that here we slightly abuse the term subsequence
for simplicity, since t𝐿[𝑖] actually starts from the left point of 𝑡𝑚𝑑 to
𝑡0, i.e., reversed from the subsequence of t.

Let 𝑡𝑚𝑑 and 𝑠𝑚𝑑 denote the median point of t and s respec-
tively, according to the idea of median approximation, we assume
𝑡𝑚𝑑 = 𝑠𝑚𝑑 for approximation. Analogously, let s𝐿[𝑗] , s

𝑅
[𝑗] denote the

subsequence of s on the left and right of 𝑠𝑚𝑑 respectively with size 𝑗 .
We will start with the state transition equation for the bi-directional
dynamic programming algorithm.

4.1.2 Bi-directional Dynamic Programming. We modify the dy-
namic programming algorithm proposed in Algorithm 1 to bi-
directional dynamic programming for median approximation. Let
𝑑𝑝𝐿 (𝑖, 𝑗) denote the minimum repair cost from time series t𝐿[𝑖] to
s𝐿[𝑗] , and 𝑑𝑝

𝑅 (𝑖, 𝑗) denote the minimum repair cost from time series
t𝑅[𝑖] to s𝑅[𝑗] , we have the following state transition equation

𝑑𝑝𝐿 (𝑖, 𝑗) ← min(𝑑𝑝𝐿 (𝑖 − 1, 𝑗 − 1) + Δ𝑚 (𝑡𝑖 , 𝑠 𝑗), (6)

𝑑𝑝𝐿 (𝑖, 𝑗 − 1) + Δ𝑎 (𝑠 𝑗), 𝑑𝑝𝐿 (𝑖 − 1, 𝑗) + Δ𝑑 (𝑡𝑖))

𝑑𝑝𝑅 (𝑖, 𝑗) ← min(𝑑𝑝𝑅 (𝑖 − 1, 𝑗 − 1) + Δ𝑚 (𝑡𝑖 , 𝑠 𝑗), (7)

𝑑𝑝𝑅 (𝑖, 𝑗 − 1) + Δ𝑎 (𝑠 𝑗), 𝑑𝑝𝑅 (𝑖 − 1, 𝑗) + Δ𝑑 (𝑡𝑖))

where Δ𝑚 , Δ𝑎 and Δ𝑑 are the move, insert and delete costs, respec-
tively. The overall state transition equation is the combination of
the states in both directions.

𝑑𝑝𝐵𝐷 (𝑖, 𝑗) ← 𝑑𝑝𝐿 (𝑖, 𝑗) + 𝑑𝑝𝑅 (𝑖, 𝑗) (8)

Indeed, the state transition equation for the bi-directional dynamic
programming algorithm is to conduct the dynamic programming
algorithm in both directions. We show the correctness below.

Algorithm4: approximate regular interval repair RIR-Appr
Input: original time series t
Output: the match𝑀 from t to s, the length𝑚 of s

1 𝑛 ← 𝐿𝑒𝑛𝑔𝑡ℎ(t), 𝑛𝑚𝑑 ← ⌊𝑛2 ⌋, 𝑠𝑚𝑑 ← median(t) ;
2 𝜖 ′

𝑇
← median({𝑡1 − 𝑡0, 𝑡2 − 𝑡1, . . . , 𝑡𝑛−1 − 𝑡𝑛−2});

3 𝑚∗,𝑚𝑢𝑏 ,𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ← +∞,𝑚 ← 1;
4 initialize 𝐷𝑃𝐿 , 𝐷𝑃𝑅 , 𝑂𝑃𝐿 , 𝑂𝑃𝑅 ;
5 while𝑚 ≤ 𝑚𝑢𝑏 do
6 for 𝑖 ← 1 to 𝑛𝑚𝑑 do
7 Compute 𝑠𝐿𝑚, 𝑠𝑅𝑚 ;
8 Update 𝐷𝑃𝐿 [𝑖] [𝑚],𝑂𝑃𝐿 [𝑖] [𝑚] (Formula 6);
9 Update 𝐷𝑃𝑅 [𝑖] [𝑚],𝑂𝑃𝑅 [𝑖] [𝑚] (Formula 7);

10 𝐷𝑃𝐵𝐷 [𝑖] [𝑚] ← 𝐷𝑃𝐿 [𝑖] [𝑚] + 𝐷𝑃𝑅 [𝑖] [𝑚];
11 if 𝐷𝑃𝐵𝐷 [𝑛𝑚𝑑] [𝑚] < 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 then
12 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡,𝑚∗ ← 𝐷𝑃𝐵𝐷 [𝑛𝑚𝑑] [𝑚],𝑚;
13 Update𝑚𝑢𝑏 (Lemma 2);
14 𝑚 ←𝑚 + 1
15 𝑀𝐿 ← 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘 (𝑂𝑃𝐿 [𝑛𝑚𝑑] [𝑚∗], tL, sL [𝑚∗]);
16 𝑀𝑅 ← 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘 (𝑂𝑃𝐿 [𝑛𝑚𝑑] [𝑚∗], tR, sR [𝑚∗]);
17 𝑀 ← 𝑀𝐿 ∪ {(𝑡𝑚𝑑 , 𝑠𝑚𝑑)} ∪𝑀𝑅/𝑀𝐿 ∪𝑀𝑅//𝑛 is odd / even;
18 return𝑀,𝑚∗;

Proposition 9 (Correctness of the Bi-directional State Transition).
The state transition equation 𝑑𝑝𝐵𝐷 (𝑖, 𝑗) (Formula 8) gives the mini-
mum repair cost from time series (t𝐿[𝑖] , t

𝑅
[𝑖]) to (s

𝐿
[𝑗] , s

𝑅
[𝑗]).

It shows the correctness of the dynamic programming, i.e., the
recurrence state transition equation 𝑑𝑝𝐵𝐷 (𝑖, 𝑗) of Formula 8 always
calculates the minimum repair cost in each step. This ensures the
final result of the dynamic programming is the minimum repair cost
from t to s𝑎𝑝𝑝𝑟 given by the approximate algorithm. It is necessary
to guarantee the approximation bound in Proposition 11 as well as
the special case of the minimum repair cost in Corollary 12.

Analogously, 𝑑𝑝𝐿 (0, 𝑝) and 𝑑𝑝𝑅 (0, 𝑝) are initialized with 𝑝𝜆𝑎

for 𝑝 ∈ {1, 2, . . . }, and 𝑑𝑝𝐿 (𝑞, 0) and 𝑑𝑝𝑅 (𝑞, 0) are initialized with
𝑞𝜆𝑑 for 𝑞 ∈ {1, 2, . . . }. For simplicity, in the median approximation
algorithm, we use𝑚 to denote the length of s𝐿[𝑚] and s𝑅[𝑚] . Since
the repair cost does not change, Lemma 2 still holds in the new
algorithm, which bounds𝑚∗ with current minimum repair cost by

Formula 5. For an odd 𝑛, we have𝑚∗ <
⌊ 𝑐
𝜆𝑎
+𝑛⌋−1
2 , and for an even

𝑛, we have𝑚∗ <
⌊ 𝑐
𝜆𝑎
+𝑛⌋
2 . Algorithm 4 shows the overall pipeline

of the median approximation algorithm.

4.2 Approximate Interval Determination
Though efficient pruning by various bounds are proposed in Section
3.4, it is still very costly to consider a large number of possible
intervals to find the optimal 𝜖∗

𝑇
for s in Problem 5. Intuitively, as

observed in Figure 1(g), most of the intervals in the original time
series t are close to 𝜖∗

𝑇
, i.e., about 60s.

Therefore, we propose to compute an approximation 𝜖 ′
𝑇
of 𝜖∗

𝑇
by

the median of the intervals in T, i.e.,

𝜖 ′𝑇 = 𝜖𝑚𝑑 = median(𝜖1, 𝜖2, . . . , 𝜖𝑛−1) (9)

1854

where 𝜖𝑖 = 𝑡𝑖 − 𝑡𝑖−1. Line 2 in Algorithm 4 casts the approximate 𝜖 ′
𝑇
,

following Formula 9.
The median approximation (Algorithm 4) does not enumerate

the interval and the start point. The while loop runs at most𝑚𝑢𝑏

times, which is bounded by 2𝑛. For each𝑚 ≤ 𝑚𝑢𝑏 , the matrices
𝐷𝑃𝐿 and 𝐷𝑃𝑅 are updated 𝑛 times in total. Therefore, Algorithm 4
runs in 𝑂 (𝑛2) time.

4.3 Approximation Bound
To prove the error bound for the approximate algorithm, we first
prove the triangle inequality over our proposed repair cost, which
restricts the difference between the exact and approximate costs
(Lemma 10). Combining with the discussions of the repaired time se-
ries, we finally derive an error bound for the approximate algorithm
to the optimal solution (Proposition 11).

First, by extending the cost function Δ, we use Δ(t𝑎, t𝑏) to de-
note the minimum repair cost between t𝑎 and t𝑏 , i.e., Δ(t𝑎, t𝑏) =
min𝑀 Δ(t𝑎, t𝑏 , 𝑀), where𝑀 minimizing the cost, e.g., computed by
Algorithm 1. We present the triangle inequality of the repair cost.

Lemma 10. For any three time series of arbitrary length t𝑎, t𝑏 , t𝑐 , it
always has Δ(t𝑎, t𝑏) ≤ Δ(t𝑎, t𝑐) + Δ(t𝑐 , t𝑏).

Let t denote the input time series, s𝑒𝑥𝑎𝑐𝑡 and s𝑎𝑝𝑝𝑟 denote the
regular interval time series computed by the exact and the appro-
priate methods, respectively. Based on the triangle inequality, we
derive the error bound for the approximate algorithm.

Proposition 11. Compared to the exact cost Δ(t, s𝑒𝑥𝑎𝑐𝑡), Algo-
rithm 4 returns an approximate solution with cost Δ(t, s𝑎𝑝𝑝𝑟), having

Δ(t, s𝑎𝑝𝑝𝑟)
Δ(t, s𝑒𝑥𝑎𝑐𝑡) ≤ 1 + 8𝜆𝑑

𝛿𝑚𝑖𝑛
𝜖

where 𝛿𝑚𝑖𝑛
𝜖 = min(|𝜖𝑚𝑑 − 𝜖𝑖 |, 𝜆𝑑), 𝑖 = 1, 2, . . . , 𝑛 − 1 and 𝜖𝑖 ≠ 𝜖𝑚𝑑 .

As shown, the approximation is bounded by factors of 𝜆𝑑 the
delete cost, 𝜖𝑖 the intervals of t, and 𝜖𝑚𝑑 the median interval of t.

In the special case that 𝜖𝑒𝑥𝑎𝑐𝑡
𝑇

and 𝑠𝑒𝑥𝑎𝑐𝑡
𝑚𝑑

are exactly 𝜖𝑚𝑑 and
𝑡𝑚𝑑 , we can further prove that the approximate algorithm indeed
returns the optimal solution. That is, the median interval and the
median timestamp of t are accurate in this case, exactly those of
the optimal repair. It is highly probable given the robustness of the
median in handling noisy time series data [29].

Corollary 12. If 𝜖𝑒𝑥𝑎𝑐𝑡
𝑇

= 𝜖𝑚𝑑 , 𝑠𝑒𝑥𝑎𝑐𝑡𝑚𝑑
= 𝑡𝑚𝑑 , the approximate al-

gorithm returns the minimum repair cost, Δ(t, s𝑎𝑝𝑝𝑟) = Δ(t, s𝑒𝑥𝑎𝑐𝑡).

5 SYSTEM IMPLEMENTATION
In this section, we implement the timestamp repair approach as a
function timestamprepair in an open-source time series database,
Apache IoTDB [1, 2]. In addition, the timestamp repair results could
be utilized to evaluate the data quality of the time series, including
timeliness, completeness and consistency.

5.1 Timestamp Repair Function
We implement the efficient approximate version of timestamp repair,
Algorithm 4, as the function timestamprepair [4]. It can be used
in a SQL statement as follows

original time series !

with irregular interval

repaired time series "

with regular interval

#!

move

add

delete

$"

%"

!"#$%&&

consistencytimeliness completeness

Figure 4: Data quality measures

Table 2: Features of the datasets. Quality issues are the data
quality issues existing in the original datasets. Truth denotes
the ground truth factors of the dataset that we have.

Dataset Data quality issues Truth #Points

Engine delayed 𝜖𝑇 , 𝑠0,𝑚 43,954
Turbine delayed, missing, redundant 𝜖𝑇 28,000
Vehicle delayed, missing, redundant - 111,790
Energy - 𝜖𝑇 , 𝑠0,𝑚 19,735
PM - 𝜖𝑇 , 𝑠0,𝑚 43,824
Air Quality - 𝜖𝑇 , 𝑠0,𝑚 9,357

select timestamprepair(s1, [interval]) from root.test.d1

where interval is an optional parameter to deal with different sce-
narios when the interval of the time series is given or not. It returns
a repaired time series of s1 with regular time intervals.

5.2 Data Quality Measures
As introduced in Section 1, the irregular time intervals are intro-
duced by delayed, missing or repeated data points, typical data qual-
ity issues. To this end, we can utilize the repair result s and thematch
𝑀 to profile data quality measures for time series databases. The
aforesaid data quality issues lead to three time series data quality
measures, including timeliness, completeness, and consistency
[5], in the time dimension as illustrated in Figure 4.

Definition 7 (timeliness). Timeliness measures the ratio of the
data that are not delayed referring to𝑀 , defined by

timeliness(t) = 1 −
|{(𝑡𝑖 , 𝑠 𝑗) | (𝑡𝑖 , 𝑠 𝑗) ∈ 𝑀 ∧ 𝑡𝑖 ≠ 𝑠 𝑗 }|

|s| . (10)

Definition 8 (completeness). Completeness measures the ratio of
the data that are not missing referring to𝑀 , defined by

completeness(t) = 1 −
|{(∗, 𝑠 𝑗) | (∗, 𝑠 𝑗) ∈ 𝑀}|

|s| . (11)

Definition 9 (consistency). Consistency measures the ratio of the
data that are not redundant referring to𝑀 , defined by

consistency(t) = 1 − |{(𝑡𝑖 , ∗) | (𝑡𝑖 , ∗) ∈ 𝑀}||s| . (12)

The corresponding SQL statements for these measures are
select completeness(s1) from root.test.d1
select consistency(s1) from root.test.d1
select timeliness(s1) from root.test.d1

1855

Table 3: 𝑅𝑀𝑆𝐸𝑓 , 𝑅𝑀𝑆𝐸𝑡 and Time cost of RIR-Exact and RIR-Appr compared to the existing approaches

Dataset 𝑅𝑀𝑆𝐸𝑓 𝑅𝑀𝑆𝐸𝑡 Time cost (s)
SCREEN CTTC RIR-Exact RIR-Appr SCREEN CTTC RIR-Exact RIR-Appr SCREEN CTTC RIR-Exact RIR-Appr

Engine 2.29 0.24 0.14 0.73 22.63 6.31 0.88 4.34 1.80 ∗ 10−3 8.91 ∗ 10−2 0.178 5.18 ∗ 10−2
Energy 7.34 5.24 0.37 5.00 1833.58 457.15 2.20 475.86 4.28 ∗ 10−2 141 154 42.1
PM 6.11 3.58 0.33 0.72 2090.94 2.20 1.80 4.20 7.30 ∗ 10−2 1470 707 194
Air Quality 6.41 3.98 0.33 0.71 2220.79 2.80 2.00 2.40 7.58 ∗ 10−2 1770 811 217
Turbine 1.53 1.53 1.17 1.53 - - - - 5.41 ∗ 10−2 163 226 55.5

6 EXPERIMENTS
6.1 Experiment Settings
6.1.1 Datasets and Pre-Processing. The datasets and their data qual-
ity issues are listed briefly in Table 2. The first three datasets are
from our partner companies, where the Engine dataset has the
ground truth timestamps, whereas the Turbine data are known to
be collected in every 7s but with unknown start and length.

For datasets with regular interval timestamps, including En-
ergy, PM and air quality, we first inject random delays into the
timestamps based on Gaussian distribution. The missing points
and redundant points are then introduced, controlled by the error
rate. Without further statement, the error rate is set to 1%, i.e., 1%
repeated data are injected into the data and 1% of the missing points
are selected to be removed.

6.1.2 Metrics. Given the repaired result s𝑟 and the truth s𝑡 , we
consider two metrics, including RMSE loss between the time series
(𝑅𝑀𝑆𝐸𝑡 (·)) and RMSE between the factors (𝑅𝑀𝑆𝐸𝑓 (·)).

RMSE loss between the time series (𝑅𝑀𝑆𝐸𝑡 (·)) evaluates the
difference on (repaired and truth) timestamps. We consider RMSE
over the shorter lengthmin (|s𝑟 |, |s𝑡 |) length of both sequences, i.e.,

𝑅𝑀𝑆𝐸𝑡 (s𝑟 , s𝑡) =
√︂∑min (|s𝑟 |,|s𝑡 |)

𝑖=0 (𝑠𝑟
𝑖
−𝑠𝑡

𝑖
)2

min (|s𝑟 |, |s𝑡 |) .

Recall that the interval, start and length uniquely determine all
the timestamps of regular interval time seris s. Thereby, RMSE
between the factors (𝑅𝑀𝑆𝐸𝑓 (·)) evaluates the regular interval time
series through the three factors. Let 𝜖𝑟

𝑇
, 𝑠𝑟0,𝑚

𝑟 denote the three
factors of s𝑟 and 𝜖𝑡

𝑇
, 𝑠𝑡0,𝑚

𝑡 denote the three factors of s𝑡 . We have
𝑅𝑀𝑆𝐸𝑓 (s𝑟 , s𝑡) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑤𝜖 |𝜖𝑟𝑇 − 𝜖𝑡

𝑇
|,𝑤𝑠 |𝑠𝑟0 − 𝑠𝑡0 |,𝑤𝑙 |𝑚𝑟 − 𝑚𝑡 |)

where𝑤𝜖 ,𝑤𝑠 and𝑤𝑙 are weights for three factors. Since the interval,
start and length factors are in different scales, we normalize the
differences of three factors and take the average according to their
weights, e.g., (𝑤𝜖 ,𝑤𝑠 ,𝑤𝑙) = (1, 0.5, 0.1).

6.1.3 Baselines. We include CTTC [28] and SCREEN [29] as base-
lines. CTTC cleans timestamps under temporal constraints in a
form of temporal networks [13]. SCREEN cleans time series by
sliding windows, based on speed constraints, i.e., the variance of
the values. We adapt SCREEN to timestamp repairing by regarding
timestamps as values. For both CTTC and SCREEN, we use the
median of the time intervals in t as the input constraints.

The experiment code and public datasets are available at [6].

6.2 Comparison with Existing Methods
For each dataset, we compare our proposal with the existing meth-
ods on 𝑅𝑀𝑆𝐸𝑡 , 𝑅𝑀𝑆𝐸𝑓 and time cost. As reported in Table 3, RIR-
Exact outperforms other methods in terms of 𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑀𝑆𝐸𝑓

over all the datasets. The result is not surprising, since it searches
exactly for the minimum cost of modification, as presented in Sec-
tion 1. For the same reason, RIR-Appr also shows stably competitive
results in both metrics, but lower time cost than RIR-Exact.

Since SCREEN is conducted based on sliding windows, which
fails to learn an overall repair, thus showing worse RMSE results
than other approaches, and of course lower time cost.

CTTC employs temporal constraints to repair the timestamps,
which fails to consider the insertion and deletion of the points.
In most datasets, it performs worse than RIR-Appr except Engine
dataset, which contains only delayed points.

6.3 Application Case Studies
6.3.1 Frequency-Domain Analysis. To apply timestamp repairing
to FFT, while the values of delayed and deleted points are naturally
processed, for the missing points, we need to impute the corre-
sponding values, e.g., by linear interpolation [17], as introduced
in Section 1. Once the missing values are also imputed, we can
compare the time series repaired (on both timestamps and values),
in terms of FFT results in two aspects: (1) the time cost of apply-
ing frequency-domain analysis over different sequences, and (2)
RMSE loss between the analyzed results of various methods and
the results of ground truth. That is, we evaluate the distance of the
repaired time series to the ground truth in the frequency domain.
Lower RMSE means better performance. NUFFT [14] with built-in
interpolation is also reported as a baseline.

Figure 5(a) reports the time cost of the repaired time series with
frequency-domain analysis approaches over Energy dataset. For
original data with irregular intervals, only NUFFT could be applied,
thereby showing the largest time cost. Time costs of other sequences
with regular intervals are close, demonstrating the advantage of
regular interval sequences. Moreover, Figure 5(b) further shows
the RMSE results. It is not surprising that our RIR-Exact shows the
best performance, analogous to the results illustrated in Table 3.
Besides, RIR-Appr obviously outperforms other baseline methods
in RMSE, again verifying the superiority of our approximate repair.

6.3.2 Data Compression. Another benefit of regular interval time
series is the nature of being compressed, especially in the time series
database that employs second-order differences for compression.
We therefore implement the algorithm in an open-source time series
database Apache IoTDB [30], and leverage the database to store the
original and repaired time series respectively.

In this experiment, we use the timeseries database to store origi-
nal and repaired time series data from 0.6 to 3 million data points.
For each size, we insert data into the database and record the in-
creases of the storage space. Figure 6(a) reports the results on

1856

10
-4

10
-3

10
-2

10
-1

N
U

F
F

T

S
C

R
E

E
N

C
T

T
C

R
IR

-A
p
p
r

R
IR

-E
x
a
c
t

T
ru

th

T
im

e
 c

o
s
t(

s
)

(a)

 0

 2000

 4000

 6000

 8000

 10000

N
U

F
F

T

S
C

R
E

E
N

C
T

T
C

R
IR

-A
p
p
r

R
IR

-E
x
a
c
t

R
M

S
E

(b)

Figure 5: Application on frequency-domain analysis

 0

 5

 10

 15

 20

0.6 1.2 1.8 2.4 3

S
to

ra
g
e
 S

iz
e
(M

B
)

Data size(M)

(a)

original
repaired

 0

 5

 10

 15

 20

 25

 30

0.6 1.2 1.8 2.4 3.0

S
p
a
c
e
 S

a
v
in

g
 (

%
)

Data size(M)

(b)

Figure 6: Application on data compression

Table 4: Results of the data quality measures over different
real-world use cases.

Dataset timeliness completeness consistency

Engine 0.988 1 1
Turbine 0.899 0.718 0.853
Vehicle 0.955 0.751 0.984

the storage size. It is not surprising that the repaired time se-
ries occupy less space in the database. We also report the spacing
saving ratios between the methods in Figure 6(b), computed by
𝑆𝑝𝑎𝑐𝑒 𝑆𝑎𝑣𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 = 1 − 𝑆𝑝𝑎𝑐𝑒𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑

𝑆𝑝𝑎𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
, where 𝑆𝑝𝑎𝑐𝑒𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 and

𝑆𝑝𝑎𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 denotes the space used by repaired data and original
data, respectively. Due to the principle of the second-order differ-
ences, regular interval time series (with 0 second-order difference
in timestamp) takes minimal space for storage. As shown in Fig-
ure 6(b), the 𝑆𝑝𝑎𝑐𝑒 𝑆𝑎𝑣𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 is stably around 15%. That is to
say, the regular interval timestamps are compressed effectively.

6.3.3 Data Quality Measures. In Section 5.2, upon timestamp re-
pairs, we implement three data quality measures, i.e., timeliness,
completeness and consistency in an open-source time series
database Apache IoTDB [1]. To demonstrate the applications of
data quality evaluation, we report the results from our partner
companies, where IoTDB is deployed to manage time series data
including Engine, Turbine and Vehicle with real data quality issues
as summarized in Section 6.1.1 in Table 2.

Table 4 reports the results of the case study over three real-world
use cases. (1) For Engine data, as the truth we obtain ahead (Sec-
tion 6.1.1), the main quality issue is known as delayed points. The

measures thereby show a lower result in timeliness, which con-
forms to the ground truth. (2) The Turbine data are delayed, miss-
ing and redundant in different degrees, reflected by timeliness,
completeness and consistency, respectively. (3) For Vehicle data,
the ground truth of the time series factors are unknown owing to
the extremely noisy data. According to the measures, missing data
is the main quality issue (also shown in Example 1 (h)).

In summary, the three measures provide a simple but intuitive
overview of the time series data quality in the time domain. They do
not only provide profiling for the data in the time domain, but could
also potentially guide the selection of the data cleaning methods.
Moreover, the measures are implemented as SQL statements, which
could be simply used for the time series stored in the database.

6.4 Handling Missing Data Points
While this proposal repairs timestamps of data points, one may
further employ the existing methods such as [17, 23] for interpo-
lating or imputing the values of the inserted points. In this sense,
our method is complementary to any interpolation or imputation
methods for handling missing data points.

Let us first introduce how the data points are treated on values
in addition to timestamps. To be specific, for the move operation,
denoted by (𝑡𝑖 , 𝑠 𝑗) in a match 𝑀 , the data point recorded at 𝑡𝑖 is
moved to 𝑠 𝑗 , whose value is not changed. For the delete operation,
denoted by (𝑡𝑖 , ∗), the data point recorded at 𝑡𝑖 is deleted, together
with the corresponding value. For the insert operation, denote by
(∗, 𝑠 𝑗), a new data point with timestamp 𝑠 𝑗 is inserted. In such a
scenario, any interpolation or imputation methods such as [17, 23]
could be applied to impute the missing value for 𝑠 𝑗 . Since the move
and delete operations do not modify the values, errors on values
are mainly introduced by the imputation of missing points.

As aforesaid, we combine our exact and appropriate timestamp
repair algorithms with the existing data imputation methods, and
evaluate the value imputation error (RMSE) of the data points. To
be specific, for each missing point (∗, 𝑠 𝑗) returned in the timestamp
repair results, we employ the methods including Interpolation [17],
KNN [7] or SoftImpute [23], to impute the missing values. The
RMSE loss between the imputed values and the corresponding
truths is reported. Thereby, the experiment is conducted over three
datasets with ground truth, including Energy, PM and Air Quality.

As shown in Table 5, it is not surprising that RIR-Exact with more
accurate timestamp repairs shows better imputation/interpolation
performance than those of RIR-Appr in most tests. RIR-Exact with
Interpolation shows the best value imputation performance in all
the datasets, and thus is recommended for accuracy in practice.

Moreover, Table 6 shows the performance of FFT analysis over
the data after repairing both timestamps and values, as introduced
in Section 6.3. Again, RIR-Exact with Interpolation, having the
best value imputation performance in Table 5, shows the best FFT
application performance, in all the datasets.

6.5 Evaluation on Parameter Determination
In experiments, we set the costs 𝜆𝑎 and 𝜆𝑑 to 𝜖𝑚𝑎𝑥 . Nevertheless,
to verify the effectiveness of setting 𝜆 = 𝜖𝑚𝑎𝑥 , we further conduct
experiments by varying 𝜆.

1857

Table 5: Imputation RMSE of combining RIR with different
imputation methods over three datasets.

Method Imputation Energy PM Air Quality

RIR-Exact
Interpolation 0.237 2.326 21.461
KNN 0.258 3.460 35.144
SoftImpute 3.812 45.511 69.641

RIR-Appr
Interpolation 0.299 4.367 53.303
KNN 0.322 4.625 38.568
SoftImpute 3.709 45.935 73.512

Table 6: FFT RMSE of combining RIR with different imputa-
tion methods over three datasets.

Method Imputation Energy PM Air Quality

RIR-Exact
Interpolation 60.69 9335.25 261.39
KNN 60.72 9369.60 263.91
SoftImpute 67.35 9379.25 477.24

RIR-Appr
Interpolation 173.76 10337.05 2805.78
KNN 173.75 10371.46 2808.84
SoftImpute 174.11 10392.99 2907.53

Figure 7 reports 𝑅𝑀𝑆𝐸𝑓 and time cost under various 𝜆. In addi-
tion, we also plot the chosen maximum interval 𝜖𝑚𝑎𝑥 with dashed
lines. Overall, RIR-Exact and RIR-Appr are robust and not very
sensitive to 𝜆 when 𝜆 is large enough (𝜆 > 20 in all the evaluated
datasets). In Energy and Air Quality, 𝑅𝑀𝑆𝐸𝑓 of either RIR-Exact or
RIR-Appr starts to increase a bit when 𝜆 > 𝜖𝑚𝑎𝑥 . The reason is that
as aforementioned, a larger 𝜆 could make the deletion and insertion
difficult. Another observation from Figure 7 is that the time cost
decreases with the growth of 𝜆. This is because a larger 𝜆 might
introduce less deletions and insertions, thus reducing the length of
the match𝑀 . According to the evaluation, 𝜆 = 𝜖𝑚𝑎𝑥 could balance
the accuracy and the time cost.

6.6 Evaluation on Various Errors
6.6.1 Errors Detectable by Values. In this section, we compare the
proposed RIR-Exact-V, considering data characteristics of values,
with RIR-Exact, which only considers timestamps. To fully evaluate
the consideration of data characteristics, we need to simulate the
cases illustrated in Figure 3, i.e., to inject errors of the middle points,
making the repeated and delayed points hard to distinguish by
timestamps only. The injection is as follows. (a) When a point
𝑡𝑖 is deleted, we randomly move 𝑡𝑖−1 to 𝑡𝑖−1+𝑡𝑖

2 or move 𝑡𝑖+1 to
𝑡𝑖+1+𝑡𝑖

2 . (b) When a point 𝑡𝑖 is inserted between 𝑡𝑖−1 and 𝑡𝑖+1, we
set 𝑡𝑖 =

𝑡𝑖−1+𝑡𝑖+1
2 , and randomly move 𝑡𝑖−1 to 𝑡𝑖−1+𝑡𝑖−2

2 or move
𝑡𝑖+1 to 𝑡𝑖+1+𝑡𝑖+2

2 . Since the solutions share the same repair costs
on timestamps, not distinguishable by 𝑅𝑀𝑆𝐸𝑓 , we use Precision,
Recall and F1-score to evaluate the correctly found matches. Let𝑀𝑡

and 𝑀 ′ denote the ground truth match and the match computed
by the algorithm, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑀𝑡∩𝑀′ |
|𝑀′ | , 𝑅𝑒𝑐𝑎𝑙𝑙 =

|𝑀𝑡∩𝑀′ |
|𝑀𝑡 | , and

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 .

Figure 8 presents the results over the Energy dataset. As shown,
RIR-Exact-V achieves higher Precision, Recall and F1-score than
RIR-Exact, i.e., benefits from considering the data characteristics of

RIR-Exact RIR-Appr

10
-1

10
0

10
1

10
2

10
3

1 5 10 20 40 60 80 100
200

300
400

500
600

800
1000

εmax=181

R
M

S
E

f

λ

(a) Energy

10
1

10
2

10
3

1 5 10 20 40 60 80 100
200

300
400

500
600

800
1000

T
im

e
 c

o
s
t(

s
)

λ

(b) Energy

10
-1

10
0

10
1

10
2

10
3

1 5 10 20 40 60 80 100
200

300
400

500
600

800
1000

εmax=121

R
M

S
E

f

λ

(c) PM

10
2

10
3

1 5 10 20 40 60 80 100
200

300
400

500
600

800
1000

T
im

e
 c

o
s
t(

s
)

λ

(d) PM

10
-1

10
0

10
1

10
2

10
3

1 5 10 20 40 60 80 100
120

140
160

180
200

300
400

εmax=108

R
M

S
E

f

λ

(e) Air Quality

10
2

10
3

1 5 10 20 40 60 80 100
120

140
160

180
200

300
400

T
im

e
 c

o
s
t(

s
)

λ

(f) Air Quality

Figure 7: Varying 𝜆 over three datasets. The dashed lines are
the maximum interval 𝜖𝑚𝑎𝑥 of the datasets.

values. When the error rate increases, RIR-Exact-V still maintains
high precision. The corresponding recall might decrease due to the
growth of the error rate. It is not surprising that the time cost of
RIR-Exact-V is higher, to maintain the matrix 𝑉 .

6.6.2 Errors Detectable by Timestamps. To vary the data quality
issues of delayed, missing and repeated points, we change the error
ratio of each issue, respectively, while fixing the error ratios of the
others. The error ratios range from 1% to 10%.

Figure 9 presents the results over the Energy data. When the
error ratio increases, the performance of the approximate method
decreases, while RIR-Exact still gives accurate results. Compared
to the delayed issue, the missing and repeated points affect more
the repair, since the number of data points is changed.

7 RELATEDWORK
Outliers of timestamps and values are caused by various mecha-
nisms [15]. It is necessary to correct these erroneous timestamps as
illustrated in Section 1. However, most existing data repairing tech-
niques (such as [8]) cannot be directly applied due to the distinct
difference between temporal constraints and integrity constraints.

CTTC [28] proposes to repair inconsistent timestamps that do
not conform to the given temporal constraints. It utilizes a temporal
constraint network and proves that any repair can be transformed
to a solution with tight chains. Then, CTTC captures a set of candi-
dates via unchanged assignments and tight edges, and determines

1858

RIR-Exact-V RIR-Exact

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

Error Ratio(%)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10
R

e
c
a

ll

Error Ratio(%)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
1

-s
c
o

re

Error Ratio(%)

(c)

10
1

10
2

10
3

1 2 3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t(

s
)

Error Ratio(%)

(d)

Figure 8: (a) Precision, (b) Recall, (c) F1-score and (d) Time
cost of RIR-Exact-V and RIR-Exact over Energy dataset.

RIR-Exact RIR-Appr

0

10
-2

10
-1

10
0

1 2 3 4 5 6 7 8 9 10

R
M

S
E

t

Error Ratio(%)

(a) delayed

10
4

10
5

1 2 3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t(

m
s
)

Error Ratio(%)

(b) delayed

0

2k

4k

6k

8k

1 2 3 4 5 6 7 8 9 10

R
M

S
E

t

Error Ratio(%)

(c) missing

10
4

10
5

1 2 3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t(

m
s
)

Error Ratio(%)

(d) missing

0

5k

10k

15k

1 2 3 4 5 6 7 8 9 10

R
M

S
E

t

Error Ratio(%)

(e) repeated

10
4

10
5

1 2 3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t(

m
s
)

Error Ratio(%)

(f) repeated

Figure 9: Varying ratios of different data quality issues

the repair with a heuristic algorithm. In our problem setting, the
temporal constraint network is a chain, where each node denotes
a timestamp and all temporal constraints on edges are the same
interval, i.e., [𝜖𝑇 , 𝜖𝑇]. CTTC is unable to determine the constraints,

i.e., the interval 𝜖𝑇 should always be given in advance. Moreover,
CTTC fails to consider the insertion or deletion of points, which
leads to a huge shift when there exist missing or repeated points.

Holistic approach [12] can repair erroneous timestamps by ex-
pressing regular time intervals as denial constraints [11]. Similar to
CTTC, Holistic repair does not handle missing and repeated points.

Another timestamp repairing algorithm is [26]. Unlike CTTC
andHolistic repairing algorithms, [26] is based on probability rather
than constraints. It first determines the order of the data points and
then adapts the timestamps. However, it is highly dependent on
the correctness of the ordering returned by the first step.

SCREEN [29] is a stream data cleaning algorithm. It considers
the constraints on the speed of data changes. In our problem setting,
the speed constraint is set as the given time interval, to repair the
irregular interval timestamps in each window.

Although Algorithm 1 is devised based on dynamic program-
ming, the abstraction of Match Searching is different from a stan-
dard edit problem [18] or its variants [10]. The reason is that both
the source and target strings are given in the standard edit problem,
while the length of our target time series is not fixed and with a
dynamic bound for length in Algorithm 1. That is, our approach
does not only search for the match𝑀 , but also adaptively finds the
optimal length for the target time series with the dynamic bound
(Lemma 2), whereas the standard edit problem has a known target.

8 CONCLUSION
In this paper, to repair dirty timestamps in a time series for reg-
ular time intervals, we propose to move, insert and delete data
points. The repairing problem has multiple interacting factors to
determine, including the start, length and interval of the time se-
ries, if not given in advance, making it challenging. We investigate
the lower bounds of repairing for efficient pruning. Moreover, an
approximation based on bi-directional dynamic programming is
also devised for more efficient repair. Comprehensive experiments
demonstrate the superiority of our proposals in both repair accu-
racy and downstream applications, e.g., frequency-domain analysis
and data compression.

To repair timestamps for irregular interval time series, one may
consider predicting the next timestamp using the previous ones
by a machine learning model [31]. The problem, however, is more
complicated. Rather than a regular time interval to determine in
this study, it is difficult to decide how distant the prediction devi-
ates from the observation as a timestamp error. Another direction
to improve the paper is to further combine the data values with
the problem, e.g., try to incorporate data characteristics in the re-
pair costs, rather than only utilizing them to decide matches in
Section 3.1.2. As data characteristics, which vary in datasets, are
more complicated to consider than timestamps, we thus leave this
interesting yet challenging problem as a future study.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China (62072265, 62021002), the National Key Re-
search and Development Plan (2021YFB3300500, 2019YFB1705301,
2019YFB1707001), BNR2022RC01011. Shaoxu Song is the corre-
sponding author.

1859

REFERENCES
[1] Apache IoTDB. https://iotdb.apache.org. Accessed May 2022.
[2] https://github.com/apache/iotdb/tree/master/library-udf. Accessed May 2022.
[3] https://sxsong.github.io/doc/timestamp.pdf. Accessed May 2022.
[4] https://iotdb.apache.org/UserGuide/Master/Library-UDF/Data-Repairing.html.

Accessed May 2022.
[5] https://iotdb.apache.org/UserGuide/Master/Library-UDF/Data-Quality.html. Ac-

cessed May 2022.
[6] Github Repository. https://github.com/fangfcg/regular-interval-repair. Accessed

May 2022.
[7] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3):175–185, 1992.
[8] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A cost-based model and effective

heuristic for repairing constraints by value modification. In SIGMOD Conference,
pages 143–154. ACM, 2005.

[9] X. Cao, G. Cong, and C. S. Jensen. Mining significant semantic locations from
GPS data. Proc. VLDB Endow., 3(1):1009–1020, 2010.

[10] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In F. Özcan, editor, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore, Maryland, USA, June 14-16,
2005, pages 491–502. ACM, 2005.

[11] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. Proc. VLDB
Endow., 6(13):1498–1509, 2013.

[12] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into
context. In ICDE, pages 458–469. IEEE Computer Society, 2013.

[13] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif. Intell.,
49(1-3):61–95, 1991.

[14] J. A. Fessler and B. P. Sutton. Nonuniform fast fourier transforms using min-max
interpolation. IEEE Trans. Signal Process., 51(2):560–574, 2003.

[15] D. M. Hawkins. Identification of Outliers. Monographs on Applied Probability
and Statistics. Springer, 1980.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

[17] M. Lepot, J.-B. Aubin, and F. H. Clemens. Interpolation in time series: An intro-
ductive overview of existing methods, their performance criteria and uncertainty
assessment. Water, 9(10):796, 2017.

[18] V. I. Levenshtein et al. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union,
1966.

[19] W.-C. Lin and C.-F. Tsai. Missing value imputation: a review and analysis of the
literature (2006–2017). Artificial Intelligence Review, 53(2):1487–1509, 2020.

[20] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for functional
dependencies. In J. V. den Bussche and M. Arenas, editors, Proceedings of the

37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
Houston, TX, USA, June 10-15, 2018, pages 225–237. ACM, 2018.

[21] L. Martí, N. S. Pi, J. M. Molina, and A. C. B. Garcia. Anomaly detection based on
sensor data in petroleum industry applications. Sensors, 15(2):2774–2797, 2015.

[22] S. E. Marx, J. D. Luck, S. K. Pitla, and R. M. Hoy. Comparing various hard-
ware/software solutions and conversion methods for controller area network
(can) bus data collection. Computers and Electronics in Agriculture, 128:141–148,
2016.

[23] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for
learning large incomplete matrices. J. Mach. Learn. Res., 11:2287–2322, 2010.

[24] Y. Qin and L. Yang. Throughput comparison of automatic repeat request assisted
butterfly networks. In R. C. de Lamare, P. D. Mitchell, M. Haardt, Y. V. Zakharov,
and A. G. Burr, editors, Proceedings of the 2010 7th International Symposium on
Wireless Communication Systems, ISWCS 2010, 19-22 September 2010, University
of York, York, UK, pages 581–585. IEEE, 2010.

[25] K. R. Rao, D. N. Kim, and J. J. Hwang. Fast Fourier transform: algorithms and
applications, volume 32. Springer, 2010.

[26] A. Rogge-Solti, R. Mans, W. M. P. van der Aalst, and M. Weske. Improving
documentation by repairing event logs. In PoEM, volume 165 of Lecture Notes in
Business Information Processing, pages 129–144. Springer, 2013.

[27] R. Smolenski, J. Bojarski, A. Kempski, and P. Lezynski. Time-domain-based
assessment of data transmission error probability in smart grids with electro-
magnetic interference. IEEE Trans. Ind. Electron., 61(4):1882–1890, 2014.

[28] S. Song, R. Huang, Y. Cao, and J. Wang. Cleaning timestamps with temporal
constraints. VLDB J., 30(3):425–446, 2021.

[29] S. Song, A. Zhang, J. Wang, and P. S. Yu. SCREEN: stream data cleaning under
speed constraints. In T. K. Sellis, S. B. Davidson, and Z. G. Ives, editors, Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 827–841. ACM, 2015.

[30] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, R. Kang, J. Feinauer,
K. Mcgrail, P. Wang, D. Luo, J. Yuan, J. Wang, and J. Sun. Apache iotdb: Time-
series database for internet of things. Proc. VLDB Endow., 13(12):2901–2904,
2020.

[31] S. Xiao, J. Yan, M. Farajtabar, L. Song, X. Yang, and H. Zha. Joint modeling of
event sequence and time series with attentional twin recurrent neural networks.
CoRR, abs/1703.08524, 2017.

[32] X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng. Deep distributed fusion network
for air quality prediction. In Y. Guo and F. Farooq, editors, Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2018, London, UK, August 19-23, 2018, pages 965–973. ACM, 2018.

[33] H. Yuan and G. Li. A survey of traffic prediction: from spatio-temporal data to
intelligent transportation. Data Sci. Eng., 6(1):63–85, 2021.

1860

https://iotdb.apache.org
https://github.com/apache/iotdb/tree/master/library-udf
https://sxsong.github.io/doc/timestamp.pdf
https://iotdb.apache.org/UserGuide/Master/Library-UDF/Data-Repairing.html
https://iotdb.apache.org/UserGuide/Master/Library-UDF/Data-Quality.html
https://github.com/fangfcg/regular-interval-repair

