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Semiconductors in Everyday Lives

» Attacks can be launched via any abstraction layer
* Software bugs patched using updates
 What if hardware is compromised?
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Protection of Hardware is essential



Globalized IC Supply Chain

Functional Evolution of the Semiconductor Ecosystem (1950s-2010s)
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TSMC starts building 3nm plant in Taiwan worth $20B

Note: The individual colored blocks are only a representation of the participants present in the semiconductor value chain at

various points in time. They are not indicative of their relative market sizes. by | Nov 4, 2019 9:01am




Hardware Security Threats
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IC counterfeiting Hardware IP Hardware Trojans  Reverse-engineering
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OPINION

The overlooked security risks of

onshoring chip production

Here are four ways manufacturers can mitigate cybersecurity risks.
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Hardware IP Piracy

Automatic Implementation of Secure Silicon

US Dol indicates prominent IC (AISS)
design company sufferend a loss Dr. Lok Yan
of around 8.75 billion dollars due

to IP theft A CROSS-LAYER FRAMEWORK FOR COST-EFFECTIVE
INTELLECTUAL PROPERTY (IP) PROTECTION

EDA Forms The Basis For Designing
Secure Systems

Shares

How to accelerate the design process at a lower cost and with less risk.

ADAM CRON source: semiengineering




Logic Locking
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Logic Locking
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Threat Model
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Trusted

Attacker’s Resources
* Locked design

Trusted

Attacker’s Capabilities
* Analyze reverse-engineered locked design

* Obtained by reverse-engineering the chip

Attacker’s Objective

 To recover the secret key — Hardware IP piracy
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Learning Resilient Logic Locking
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Removes correlation between

key-gate type and key-value

N. Kavand, et al., ICCAD’22; L. Alrahis, et al.; TIFS’21; N. Limaye, et al., TCAD’21; N. Limaye, et al.,, TCAD’22; A. B. Chowdhury, et al., DAC’23; F. Wang, et al., ISPD’23
P. Chakraborty, et al., TIFS'21; A. Alaql, et al., TVLSI'21; L. Alrahis, et al., TCAS-1I’22; D. Sisejkovic et al., JETC’21; L. Alrahis, et al., DATE’22; 9




Learning Resilient Logic Locking
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Preliminary Problem Modeling

GNN-based Key-Prediction * Maps the problem of key-prediction to GNN-based node classification
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E:DE} Preliminary problem modeling obtains KPA of ~50% (random guess)
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We employ explainable ML to find the reasons behind failure of the attack
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Why Explainable ML?

Black-box

Complex computations

Outputs only accuracy
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INSIGHT
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Explainable GNN
-based Framework

Challenge 1: To select a suitable explainer

[Solution 1: Perform ablation study on explainers]

Locked Design

Observation

GNNExplainer
* is more suitable for our work (provides better explanations)
* is computationally efficient (600x better than SubgraphX)

D. Luo, et al., NIPS’20; H. Yuan, etal., ICML21; Z.Ying, et al., NeurlPS’19; T. Funke, et al., TKDE"23
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INSIGHT

Challenge 2: To identify reasons behind the failure of attack through explanations

Solution 2: We map key-prediction
problem to INV/BUF prediction problem

:D"_’i} Solution2 99.78 99.68  99.06  99.53  99.53  99.53
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INSIGHT

Semiconductor industry re-synthesizes designs upon logic locking

Challenge 3: To tackle logic re-synthesized designs

Observation: Explainer analysis indicates different

. Key Prediction Accuracy (KPA
importance scores for the gates around key-gate 4 UeA)
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Incorporating attention 6

increases KPA by 10% for 60
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INSIGHT

Challenge 4: To tackle insufficient training data

\
Solution 4: \We incorporate two approaches
* Data augmentation
_ * Semi-supervised learning y

No Data Augmentation

Solution 4

Improvement (x)
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Results
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INSIGHT achieves KPA of 2.96x and 1.86x than SCOPE and OMLA
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Results (Real-World Application)

Gaussian Blurring Example

Golden Output OMLA’s Output INSIGHT’s Output

18



Thank You!
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