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Abstract
Over the past two decades, packed malware is always a ve-

ritable challenge to security analysts. Not only is determining
the end of the unpacking increasingly difficult, but also advan-
ced packers embed a variety of anti-analysis tricks to impede
reverse engineering. As malware’s APIs provide rich infor-
mation about malicious behavior, one common anti-analysis
strategy is API obfuscation, which removes the metadata of
imported APIs from malware’s PE header and complicates
API name resolution from API callsites. In this way, even
when security analysts obtain the unpacked code, a disassem-
bler still fails to recognize imported API names, and the unpac-
ked code cannot be successfully executed. Recently, generic
binary unpacking has made breakthrough progress with noti-
ceable performance improvement. However, reconstructing
unpacked code’s import tables, which is vital for further mal-
ware static/dynamic analyses, has largely been overlooked.
Existing approaches are far from mature: they either can be ea-
sily evaded by various API obfuscation schemes (e.g., stolen
code), or suffer from incomplete API coverage.

In this paper, we aim to achieve the ultimate goal of Win-
dows malware unpacking: recovering an executable malware
program from the packed and obfuscated binary code. Based
on the process memory when the original entry point (OEP)
is reached, we develop a hardware-assisted tool, API-Xray,
to reconstruct import tables. Import table reconstruction is
challenging enough in its own right. Our core technique, API
Micro Execution, explores all possible API callsites and exe-
cutes them without knowing API argument values. At the
same time, we take advantage of hardware tracing via Intel
Branch Trace Store and NX bit to resolve API names and
finally rebuild import tables. Compared with the previous
work, API-Xray has a better resistance against various API
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obfuscation schemes and more coverage on resolved Win-
dows API names. Since July 2019, we have tested API-Xray
in practice to assist security professionals in malware analy-
sis: we have successfully rebuilt 155,811 executable malware
programs and substantially improved the detection rate for
7,514 unknown or new malware variants.

1 Introduction

Over the past two decades, malware is always one of the top
cyber threats that can cause catastrophic damage. In 2020,
over 350,000 new malicious programs worldwide are identi-
fied every day [39]. McAfee Lab estimates that malware reve-
nue can reach multiple billions of dollars by 2020 [45]. Driven
by huge financial gains, malware authors typically obfuscate
their programs to circumvent malware detection. Among dif-
ferent obfuscation technologies, binary packing is the most
prevalent one adopted by Windows malware [49, 55, 74, 86],
because it protects the original code from static analysis and
has a right balance between strength and performance [1, 6].
The trend of binary packing development reveals two salient
features. First, when a packed malware starts running, the
attached unpacking routine will pass through multi-layers of
self-modifying code until the original entry point (OEP) of
the payload is reached [11, 73]. Second, complicated packers
also incorporate multiple anti-analysis methods (e.g., anti-
debugging, anti-hooking, and anti-sandbox) to hinder both
automated and manual unpacking attempts [63].

On the defender side, generic binary unpacking has ge-
nerated a large body of literature [8, 15, 35, 38, 51, 52, 60].
Most of them rely on memory access tracing to find the re-
ach of OEP and then dump the current process memory as
the unpacked program. The recent progress in this direction,
BinUnpack [15], proposes an effective heuristics to quickly
determine the end of multi-layer unpacking without heavy me-
mory access tracing. Despite this, in BinUnpack’s large-scale
evaluation, the authors have admitted that many unpacked



malware samples cannot run, which weakens the utilization
of unpacked code in further malware analysis. This lack of
executability is not just BinUnpack that faces issues, and it
is actually fairly common for existing generic unpacking so-
lutions [8, 35, 38, 51, 52, 60]. The root cause is the unpacked
code’s import tables, which store the metadata of imported
APIs, are corrupt.

To perform malicious behavior (e.g., code remote injection
and C&C communication) in diverse Windows systems, mal-
ware samples interact with Windows OS through user-level
Windows APIs [27, 29, 53]. The import table structures in a
PE∗ file’s header store the information about Windows APIs
that the PE file requires to execute. In particular, Import Ad-
dress Table (IAT) is an address lookup table for calling Win-
dows APIs; API callsites in a PE file refer to the IAT via
indirect calls/jumps.† Note that the IAT does not take effect
until the program is loaded into memory. Another table, Im-
port Name Table (INT), containing API names corresponding
to IAT entries, can be treated as the IAT’s index. Using the
INT, Windows PE loader fills each IAT entry with the asso-
ciated Windows API’s virtual address. Since these two ta-
bles are referenced from the PE header, examining these data
from a malware sample’s header yields information about
this malware’s capability. For example, a malware instance
that imports functions from advapi32.dll is likely to access
or change the registry; “CreateRemoteThread” API is often
misused for the purpose of process injection [37]. The list of
loaded APIs is necessary and of great practical significance
for understanding malware behavior [3, 4, 32, 65]. Especially
for a new malware variant, its instructions may not match any
known malware signatures, but API calls can still provide
valuable insight into its malicious intention [70].

Unfortunately, binary packer developers are also aware of
the value of imported APIs. They reduce the wiggle room for
security analysts by not using the standard API resolution in
the packed PE file. Two key factors amplify the attackers’ ad-
vantage. First, they delete INT & IAT entries and dereference
both of them from the PE header, so that these two import
tables become unavailable for analysis. Second, to sustain
the original functionality after unpacking, the attached un-
packing routine works in an ad-hoc way to customize a new
IAT before the execution of the original code. As our study
shows in §3, this custom IAT can contain misleading entries
to hide the real names of invoked APIs. As a result, given
the process memory produced by a generic unpacking tool,
a disassembler fails to recognize API names at API callsites
(e.g., call [ f1]), because IAT entries (e.g., [ f1]) do not directly
point to the related APIs in a DLL. In addition, without the
INT as an index, Windows PE loader cannot load correct API
addresses of the target system into the IAT, and therefore the
unpacked program has no executability in a Windows system.

∗Portable Executable (PE) is an executable file format in Windows OS.
†e.g., call [ f1], and f1 points to an entry of the IAT.

The goal of import table reconstruction is to resolve invo-
ked API names and reconstruct the removed INT & IAT for
the unpacked program. Therefore, a disassembler can recog-
nize imported APIs to facilitate static analysis. Furthermore,
the unpacked program becomes a “working PE” that can be
successfully executed. Since most of the anti-analysis tricks
embedded in a packer have been removed, this working PE un-
leashes the power of malware dynamic analysis. We name the
process memory when the unpacking algorithm reaches the
original entry point of the packed program as OEP memory.
The research question of recovering a working executable file
is, given OEP memory, how to reason about the real API name
corresponding to each API callsite. Especially, different API
obfuscation schemes (e.g., stolen code and ROP redirection)
may go through a lengthy call/jump chain before reaching
the real API code, rendering manually resolving API names
tedious and error-prone.

Researchers have realized the significance of import table
reconstruction [2, 15, 17, 40–42, 44, 62, 69, 73, 81]. However,
they do not cover all API obfuscation methods that we pre-
sent in this work. The current solutions can only resolve
partial API names either for statically identifiable targets or
limited targets in a single execution trace. No work claims
to resolve Windows API names for an unpacked program
completely. Besides, many approaches track the target of an
API call using API hooking [62] or dynamic binary instru-
mentation [17, 40–42, 73], but malware can fingerprint these
monitoring environments.

In this paper, we aim to bridge the gap in the generic bi-
nary unpacking domain. Our technique, named API-Xray, is
a hybrid static-dynamic analysis towards complete import
table reconstruction. To transparently collect runtime control
flow targets, we take a less intrusive approach with no code
injection via hardware-assisted mechanisms: Intel Branch
Trace Store (BTS) and NX bit [20]. More concretely, given
an unpacked program’s OEP memory, we first perform sta-
tic analysis to explore all potential API callsites. Then, our
proposed “API Micro Execution” enforces executing each
potential API callsite without requiring concrete function ar-
guments. At the same time, we track the target address of
an API call with the help of BTS’s branch tracing capability.
In addition, we also enable NX bit to interrupt the execution
when the complex control flow finally reaches the target API.
After that, we further analyze BTS record and determine the
real API addresses that we need. At last, we associate the
obtained API addresses with the corresponding API names,
rebuild INT & IAT entries, and restore the PE header. API-
Xray complements the state-of-art binary unpacking tools and
frees security analysts from the burden of manually piecing
together the tedious steps of import table reconstruction.

We conduct a set of experiments to evaluate the efficacy
of API-Xray. We first compare API-Xray with representative
related work (e.g., S&P’15 [73] and CCS’18 [15]) on the
prevalent packers that contain API obfuscation. API-Xray is



the only one that can defeat different API obfuscation schemes
and reconstruct import tables entirely in all cases. Compared
with the other two common hardware tracing mechanisms,
namely Last Branch Record and Intel Processor Trace, we
demonstrate that BTS is the only right option for import table
reconstruction. At last, we report our experience after testing
API-Xray in practice: 1) we have successfully rebuilt 174,285
malware’s import tables, and 149,488 of them are labeled as
“Malicious” by at least one malware sandbox. 2) for 7,514
unknown or new malware variants, the output of API-Xray
can substantially increase the accuracy of malware detection.
In summary, this paper makes the following contributions:

• The success of import table reconstruction hinges on the
deep understanding of API obfuscation. Our in-depth
study unveils new API obfuscation schemes that are
not public before. Our work serves as a baseline for
evaluating the effectiveness of future work (§3).

• Our proposed “Hardware-Assisted API Micro Execution”
is the first approach towards recovering an executable
program from the packed code. Our work exhibits strong
resistance to API obfuscation and significantly lightens
the burden of security professionals (§4).

• We have evaluated API-Xray extensively with a large-
scale dataset, including prevalent and custom packers.
API-Xray maintains a high success rate consistently in
all cases (§5).

2 Background and Related work

Given a packed malware sample, our work assumes that se-
curity analysts have already found the original entry point
(OEP) of malware and obtained the process memory at that
time (i.e., OEP memory). Note that most of the current ge-
neric unpacking tools can meet this prerequisite. This paper
tackles binary packer’s API obfuscation, which deters security
analysts from the further analysis of the unpacked code.

Various API obfuscation schemes are prevalent in pac-
kers. We first introduce the background information needed
to understand this challenging problem. Then we discuss the
limitations of existing import table reconstruction methods.
At last, we introduce the work most germane to our hardware-
assisted control flow monitoring. Regarding the complexity
of advanced packers and the status quo of generic unpacking
techniques, interested readers are referred to three papers:
CSUR’13 [63], S&P’15 [73], and CCS’18 [15].

2.1 Binary Packers Avoid Using Standard
API Name Resolution

The Role of Import Tables. Figure 1 illustrates an example
of standard API resolution. The header of a PE file contains

two import tables: import name table (INT) and import ad-
dress table (IAT). These two tables contain names and addres-
ses of APIs that need to be imported from a specific DLL (e.g.,
kernel32.dll), respectively. Since the compiler is unaware of
imported API addresses at compilation time, IAT entries are
first filled with placeholders temporarily ( 1 ). Note that API
names in the INT and API addresses in the IAT are main-
tained in the same order ( 2 ). When the executable file is
loaded, Windows PE loader is responsible for mapping the
required DLLs into the memory address space of the appli-
cation, and then it fills each IAT entry with the API address
according to the item order of INT ( 3 ). After that, the IAT
begins to take effect as an address lookup table for calling
Windows APIs. An API callsite in the PE file refers to the
IAT via an indirect control flow instruction (e.g., call [ f1]):
it reads the API address from an IAT entry and then jumps
to the target ( 4 ). This design ensures the compatibility with
different Windows OS versions and address space layout rand-
omization, in which each imported API is very likely to have
a different address at every execution [64].

Delete Import Tables. The metadata of imported APIs is
detailed enough to allow a security analyst to estimate whet-
her a particular sample is malicious [70]. Therefore, when
packing malware code, a binary packer erases both INT and
IAT entries and makes these two tables unreachable from the
malware’s header. At the same time, the packer maintains a
list of removed APIs in the attached unpacking routine. When
the packed malware starts running, the unpacking routine,
which runs an unpacking algorithm to recover the original
code, has to rebuild a new IAT before the execution of the ori-
ginal code; otherwise, it will lead to an execution crash. The
most convenient way is to use “LoadLibrary” and “GetProc-
Address” APIs [63]: calling these two functions can explicitly
load a DLL and obtain an API address at run time.

Hide Invoked API Names. In addition to the removal and
deference of import tables, advanced packers also adopt other
methods to obfuscate the use of API calls and the control flow
4 in Figure 1. The purpose is to disconnect API callsites

from corresponding target API names. Symantec security re-
sponse [70] makes the first study of API obfuscation used
in the wild. They find that some packers generate the target
address of API via sophisticated instructions such as “push-
calc-ret” and “Structured Exception Handler” to impede static
analysis. Kawakoya et al. [42] and their follow-up work [41]
formally define the concept of API obfuscation and introduce
several specific patterns of API obfuscation, such as IAT redi-
rection and stolen code. In §3, we will present our in-depth
study to inspect the multiple types of API obfuscation that
mislead the control flow 4 , including new API obfuscation
schemes that have been swept under the carpet.

Anti-Static Analysis. API obfuscation combines the re-
moval of import tables and the methods of hiding invoked API
names, with the purpose of concealing a program’s functiona-
lity. Even though security analysts obtain the OEP memory,
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Figure 1: The example of standard API resolution. The “00000000” in the disk view represents a placeholder; Windows loader
will replace it with an API address (e.g., “7C805D86”) at program loading time according to the INT.

further malware analysis would still be difficult, if not impos-
sible. As addresses stored in the IAT do not directly point to
correct API entry points, a disassembler is unable to recognize
API names. Therefore, when analyzing a new unpacked mal-
ware sample, the only available resource for security analysts
is low-level assembly code, lacking semantic abstractions
represented by API calls.

Anti-Dynamic Execution. Besides, API obfuscation im-
pedes the reconstruction of a fully executable PE file—this is
the ultimate goal of generic binary unpacking. Advanced pac-
kers have embedded various heuristics to detect the existence
of malware dynamic analysis environments (e.g., debugging,
hooking, and sandbox). The state-of-the-art unpacking tool,
such as BinUnpack [15], is immune to these anti-dynamic-
analysis methods and can quickly produce a memory dump as
the unpacked program. However, if the removed INT cannot
be recovered, Windows PE loader has no idea about which
API addresses should be filled in the IAT, and thus security
analysts cannot independently run the unpacked malware to
observe its intended malicious behavior.

2.2 Limitations of Existing Work

To facilitate malware analysis, a complete binary unpacking
solution has to restore the original code as well as reconstruct
import tables. Typically, an import table reconstruction starts
after the unpacking tool captures the OEP memory, and it con-
tains three major steps [41]: 1) identify possible API callsites
from the process memory; 2) resolve API names according
to API callsites, and 3) restore both INT and IAT in the PE
header (just like 1 & 2 in Figure 1). Among them, the
most challenging step is API name resolution, as IAT entries
may not directly point to target APIs, and all of the existing
approaches fail to resolve API names completely. Table 1
summarizes different import table reconstruction approaches
in terms of memory static analysis, dynamic analysis, and
hybrid analysis.

Memory Static Analysis. The approaches in this category
perform static scanning on OEP memory to identify indirect
call (e.g., call [ f1]) and indirect jump (e.g., jmp [ f2]) instructi-

Table 1: Different import table reconstruction approaches.
§5.1 compares API-Xray with the three approaches in bold.

Class Approach

Memory Static Analysis
BinUnpack [15], Scylla [2],

Eureka [69], RePEF [81],
PinDemonium [50], Arancino [60]

Dynamic Analysis
Ugarte-Pedrero et al. [73], API Chaser [42],

API Deobfuscator [17], QuietRIATT [62],
tf_impscan [41], Secure Unpacker [40]

Hybrid Analysis RePEconstruct [44], API-Xray

ons. Each target address of these instructions is considered
as an entry of the IAT. Then, they relate all addresses in the
IAT with corresponding API names in the INT. In particular,
they match IAT entries with the address calculated from a
DLL’s base address and the offset of each export API in the
DLL’s export address table. In this way, they resolve the API
name for each IAT entry. The latest generic unpacking work in
CCS’18 [15] also adopts a similar style to reconstruct import
tables. However, all of these static methods suffer from the
same limitation: they can only recognize statically identifiable
targets; the different API obfuscation methods that we will
present in §3 can easily nullify them.

Dynamic Analysis. Another direction reconstructs import
tables at run time. S&P’15 paper [73] achieves this by instru-
menting indirect calls/jumps and grouping the memory ad-
dresses used in these instructions. Both Secure Unpacker [40]
and QuietRIATT [62] use hooking-based methods to identify
target API. They assume no matter what API obfuscation
techniques the packer used, the control flow will be trans-
ferred to the API code eventually. Therefore, they set hooks
at the entries of APIs that the packed sample is very likely
to call. Once the control flow arrives at the hooked API’s
entry point, they can determine the target API’s name. Un-
fortunately, stolen code, which we will further discuss in §3,
defies the assumption embodied by hooking-based methods.
To overcome this limitation, both Kawakoya et al. [41, 42]
and Seokwoo et al. [17] use taint analysis to trace the code
copy operation, which is necessary to complete the stolen
code obfuscation. As the stolen code shares the same taint



Table 2: The comparison of hardware control flow tracing
mechanisms. “Yes” in the “Completeness” column means it
can monitor all kinds of control flow deviation instructions,
including jmp, cjmp, call, ret, and exception.

Mechanism Completeness Size Limit Overhead Online/Offline
LBR Yes Yes Low Online
BTS Yes No High Online
IPT No No High Offline

tag with the source API code, when the program executes the
stolen code, the attached taint tag can decide which API code
is actually executed. The disadvantage of dynamic-based met-
hods is also apparent—they can only resolve API names in
a single execution path each time. Single-path API coverage
cannot guarantee the executability of malware in a new Win-
dows OS, because non-identical environments are likely to
trigger a different execution path. Furthermore, as most of the
dynamic analysis environments are not transparent, malware
can counter them via anti-sandbox and anti-debug heuristics.

Hybrid Analysis. RePEconstruct [44] takes a weak hy-
brid analysis style to resolve API names. Like S&P’15 pa-
per [73], RePEconstruct leverages dynamic binary instrumen-
tation (DBI) to record the branch instructions that jump to
dynamically loaded modules. In addition, it also takes ano-
ther round of memory static scanning to recognize the APIs
that are not executed at run time. However, its memory sta-
tic scanning does not consider API obfuscation. By contrast,
API-Xray weaves static and transparent dynamic analyses in
a compatible manner that amplifies each other’s benefit.

2.3 Control Flow Monitoring via Hardware

Multiple software security tasks require control flow moni-
toring to block anomaly intrusions, such as defending ROP
attacks [59, 89] and preventing kernel malware [46, 79]. The
software-based monitoring typically relies on a DBI platform
(e.g., Pin [48] or DynamoRIO [10]) to record control flow
transfers. However, DBI tools do not keep the code under
execution intact, and thus their instrumentation environments
are easy to be detected [25]. In contrast, hardware-based mo-
nitoring overcomes the limitation of lacking transparency;
it leverages modern CPU features to record control flow, re-
quiring no code injection. For modern Intel processors, the
mechanisms to trace branch instructions include Last Branch
Record (LBR), Branch Trace Store (BTS), and Intel Processor
Trace (IPT). We will further evaluate these three mechanisms
in §5.1, but for now, we would like to remind readers that
BTS is the only option for import table reconstruction. Ta-
ble 2 shows the different features of these three hardware
tracing mechanisms.

LBR. LBR can record 16 or 32 most recent branch pairs
(source and target) into a register.‡ LBR is very fast since
it directly accesses CPU registers, but LBR is also limited
by the maximum number of branches that it can record at
one time [82]. kBouncer [59] is the first work to use LBR to
prevent ROP attack. At each system API invocation, kBoun-
cer checks the proposed control-flow integrity (CFI) policy
against LBR stack. Later, ROPecker [16], CFIGuard [88], and
PathArmor [75] extend kBouncer [59]’s idea to prevent ROP
attacks with the help of LBR. However, due to the limited
size of LBR stack (16 or 32), an attacker can still circumvent
LBR’s monitoring [12, 24, 34].

BTS. BTS is more flexible than LBR. BTS records all
kinds of branch pairs (source and target) into a memory buf-
fer, and users can determine the memory buffer’s size and
location. Unlike LBR that overwrites the data when LBR
stack is full, BTS can be configured to halt the application
when the recording buffer is full, or when a predefined excep-
tion is triggered. Then, the user saves BTS buffer’s record,
resets it, and then resumes BTS’s monitoring. In this way,
BTS is able to record complete control flow transfers, but at
the cost of higher overhead than LBR. To prevent ROP at-
tacks, CFIMon [83] and Eunomia [87] leverage BTS to detect
illegitimate branch pairs. Recent work [9] proposes a general
BTS-based control flow monitoring framework, which can be
extended to perform different analysis tasks, such as control
flow graph reconstruction and ROP detection.

IPT. Different from both LBR and BTS, IPT is initially
designed for offline performance analysis and software debug-
ging. IPT efficiently captures control flow traces online, but it
is at the cost of the orders-of-magnitude slowdown in offline
decoding. In addition, IPT does not trace all types of cont-
rol flow transfer instructions—unconditional direct branches
(e.g., direct jump and direct call) are not logged [20]. Both
GRIFFIN [31] and FlowGuard [47] transparently enforce
fine-grained CFI policy using IPT.

3 Deep Inspection of API Obfuscation

In this section, we conduct an in-depth study to demystify API
obfuscation schemes that can hide the names of invoked APIs.
We manually analyzed all of the 29 prevalent packers tested in
BinUnpack’s paper [15]. Upon further investigation, we find
that 12 out of 29 packers obfuscate the control flow between
API callsites and target API entry points (i.e., the control flow
1 in Figure 2(a)). These 12 packers (e.g., Themida [57],

Enigma [72], and Obsidium [54]) represent advanced packers
that incorporate multiple anti-analysis methods. Note that,
for Themida, we enable its packing and partial code revea-
ling models. For other pure code virtualization tools, such as
Code Virtualizer [56] and VMProtect [77], researchers rely

‡For the Intel Haswell microarchitecture CPU, it can record 16 most recent
branch pairs. For the Intel Skylake microarchitecture CPU, the recording
number increases to 32 [20].
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Figure 2: The examples of different API obfuscation schemes (Figure 2(b)∼ Figure 2(f)). The unpacking routine allocates and
maintains a “trampoline” code area (labeled as red color boxes) to complicate the standard API call chain.

Table 3: The summary of various API obfuscation techniques. The branches involved in the complicated control flow between
the original code and the target API (Column 2) could be a very large number.

Obfuscation Type Control Flow Cited Work
Normal API Call Original Code⇒ TargetAPI —
IAT Redirection Original Code⇒ Trampoline⇒ TargetAPI [43, 63, 70]
Rewrite API Callsite Original Code⇒ Trampoline⇒ TargetAPI [63]
Anti-debugging Routine Original Code⇒ Trampoline⇒ Anti-debugging API⇒ Trampoline⇒ TargetAPI API-Xray
ROP Redirection Original Code⇒ Trampoline⇒ End of TempAPI⇒ Trampoline⇒ TargetAPI API-Xray
Stolen Code Original Code⇒ Trampoline⇒ TargetAPI+n [41, 43, 63, 70]

on totally different approaches [19, 68, 84, 85] to recover vir-
tualization protected code, and therefore they are out of our
scope.

Existing import table reconstruction approaches commonly
rely on a number of assumptions that may not reflect the com-
plexity of advanced packers. In particular, these assumptions
include: 1) the address of a target API is statically identifiable
in the unpacked code [2, 15, 69]; 2) when the control flow
arrives at a DLL, it necessarily points to the target API’s entry
point [40, 62, 73]; 3) API calls have to be forwarded through
the IAT [2, 15, 40, 62, 69, 73]. We conduct our study with the
following three questions in mind. Unfortunately, our deep
inspection gives negative answers to all of them.

Q1: Can target APIs’ addresses be statically identifiable in
the unpacked code?

Some methods use memory static scanning to reconstruct
import tables [2, 15, 69]. They have a simple assumption
that the addresses of target APIs are statically identifiable in
the OEP memory (e.g., Figure 2(a)). However, this assump-
tion can be violated by a dynamically computed address. Fi-
gure 2(b) illustrates a complicated example of IAT redirection,

which is adopted by Obsidium packer. The IAT entry points
to a “trampoline” area first. This code area is maintained by
the unpacking routine as the relay to obfuscate the control
flow 1 in Figure 2(a). For Figure 2(b), the trampoline furt-
her installs a custom structured exception handler (SEH) and
intentionally executes an erroneous instruction (e.g., division
by zero) to jump to the SEH at another place. Finally, the
SEH forwards the control flow to the target API. Without
executing the trampoline code and SEH in Figure 2(b), we
cannot identify the target API address.

Q2: When the control flow arrives at a DLL, does it neces-
sarily point to the target API’s entry point?

Dynamic-based approaches hold a common assumption
that if the control flow reaches a DLL, it necessarily points to
the target API’s entry point. However, we find a few counte-
rexamples that defy this assumption, and we summarize them
into three types. First, we find some packers (Armadillo, PEP,
and Obsidium) call the anti-debugging APIs before the target
API (as shown in Figure 2(c)). These anti-debugging APIs
perform timing checks or checksum for the anti-analysis pur-
pose. Second, some packers (e.g., PELock and Obsidium)



use the ROP style to redirect their API calls (as shown in
Figure 2(d)). That is, the trampoline first transfers the control
flow to the ret-like instruction of a temporary API; then the
control flow will go back to the trampoline again. After that,
the trampoline finally forwards the control flow to the target
API. Since this process, such as Figure 2(d), is similar to the
ROP attack, we name it as “ROP redirection.”

The third type is the so-called “stolen code” [15, 42, 63].
As shown in Figure 2(e), the stolen code invokes an API by
first executing a few bytes copied from the head of API, and
then it jumps back to the target API code right after the copied
instructions. Because many API monitoring tools set hooks at
the entry of an API, stolen code can evade these monitoring
tools. We observe the adoption of stolen code in the packers
such as Themida, PELock, and Enigma. Regarding how many
bytes the stolen code can copy, our large-scale evaluation
shows that it typically steals the first 3 bytes, 5 bytes, ..., until
one basic-block size from the target API [63]. The goal of
such a choice is to be compatible with a common design
in DLLs—Position Independent Code. Otherwise, copying
more bytes to the trampoline area may also include relative-
addressing instructions, which can lead to an execution crash.

Q3: Are API calls necessarily referred to the IAT?
All of the existing import table reconstruction approaches

assume that API calls must be referred to the IAT first. How-
ever, some packers (e.g., PEP, ASProtect, and Themida) use a
direct call instruction to invoke a target API, without passing
through the IAT. Figure 2(f) illustrates the high-level idea of
this mechanism. To achieve this goal, these packers have to
rewrite the original instruction at the API callsite. Suppose
the original API call is an indirect call (machine code: FF15),
these packers rewrite it as a direct call (machine code: E8).
Note that the direct call instruction is one byte shorter than
the indirect call, and thus these packers also add one padding
byte to the direct call instruction.

#Branches. We summarize the control flow transfer in-
formation of various API obfuscation techniques in Table 3.
To the best of our knowledge, no previous work discussed
“Anti-debugging Routine” and “ROP Redirection” ever before
in the context of API obfuscation. Note that the number of
branches involved in the complicated control flow, as shown
in the second column of Table 3, could be very large. The
maximum number encountered so far is 39,322!

4 System Design and Implementation

4.1 Overview

The overview of API-Xray is shown in Figure 3. The input to
API-Xray is the OEP memory captured by a binary unpacking
tool ( 1 in Figure 3), such as PinDemonium [50], CAPE [18],
or BinUnpack [15]. At this moment, the unpacking routine
has finished multi-layer unpacking, and the control flow just

jumps back to the malware’s OEP. Then, the binary unpacking
tool imports API-Xray as a custom DLL to reconstruct im-
port tables ( 4 ), which are finally stitched together with the
unpacked code to assemble an executable malware sample for
further analysis. API-Xray’s memory static analysis module
explores all possible API callsites in the OEP memory ( 2 );
then API-Xray enforces the execution at each API callsite
to efficiently pass through the trampoline code ( 3 ). At the
same time, the underlying hardware tracing offers a transpa-
rent environment to capture the branch that jumps to a DLL’s
memory page. Note that this branch may not point to the tar-
get API. We use the heuristics of trampoline address scope
collected from hardware tracing to further determine whether
the current branch reaches the target API. Compared with the
existing work, API-Xray’s static and dynamic analyses ( 2 &
3 ) work in concert to amplify each other’s benefit.

4.2 Memory Static Analysis
When the packed malware’s OEP is reached, we first attach
the Windows Debugger (WinDbg) to the packed malware
process. Then we use IDA Pro to disassemble the OEP me-
mory via IDA WinDbg plugin [36]. After that, we run our
custom IDA Pro plugin, which follows Eureka’s search al-
gorithm [69], to explore all potential API callsites. We first
locate all indirect call and jump instructions; then we rule out
the following cases: 1) control flow instructions whose targets
reside within the unpacked program; 2) indirect jumps that
access a lookup table for switch-case handlers; 3) valid API
callsites through standard IAT reference. The remaining CALL
or JMP instructions that have unrecognized targets are poten-
tial API callsites. After that, we save the disassembly code
and detach WinDbg. The reason for doing so is that during
our API Micro Execution, the trampoline code may detect the
presence of a debugging environment (see Figure 2(c)).

4.3 API Micro Execution
To get rid of the complex control flow shown in the second
column of Table 3 and resolve API names, we need to meet
the following two requirements:

1. Req1: executing the trampoline code associated with
each API callsite, so that we can efficiently pass through
lengthy, back-and-forth jumps;

2. Req2: capturing the control flow branch whose destina-
tion eventually resides within the target API’s code.

As shown in Figure 2’s red-colored boxes, the trampoline
code contains various types to obfuscate API name resolution,
such as SEH, junk code, call stack preparation for running
anti-debugging APIs, the code for control flow relay, and a
few bytes of stolen code. Our key observation is, given the
runtime context of OEP memory, the trampoline code can run
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Figure 3: The Overview of API-Xray.

independently. Recall that binary packers are directly applied
to the original binary code. The attached unpacking routine
for the packed program is unaware of the original code logic.
It is also the unpacking routine to allocate and maintain the
trampoline code area. Therefore, the trampoline code’s exe-
cution does not depend on the particular API arguments of
the original code. Ugarte-Pedrero et al.’s longitudinal study
in S&P’15 [73] also confirms that the trampoline code’s exe-
cution is independent of the original code.

To meet Req1, our API Micro Execution creates a new
thread from the address of each API callsite to dynamically
execute the trampoline code. We borrow the name of “Mi-
cro Execution” from Patrice Godefroid’s ICSE’14 work [33],
which uses a runtime virtual machine to execute “any code
fragment without a user-provided test driver or input data”.
Similarly, we enforce executing each API callsite without re-
quiring concrete function arguments. When we decide that the
control flow has just arrived at the target API, we terminate
the current thread because we can already resolve the API
name. Then we start a new API Micro Execution thread to
explore the next API name. In this way, we can resolve API
names one-by-one without raising any conflict. In what fol-
lows, we explore how we achieve Req2 by taking advantage
of BTS-based tracing and NX bit.

4.4 Hardware-Assisted Tracing

For the initiated API Micro Execution thread, its backend runs
a hardware-assisted control flow monitoring system. Table 2
compares three hardware tracing mechanisms. LBR and IPT
exhibit low runtime overhead, but they do not meet our requi-
rements. LBR is limited by the number of branch pairs it can
record (16 or 32), while IPT does not record unconditional
direct branches. IPT will cause our tracing to miss the branch
whose destination address just hits the target API. Therefore,
we adopt BTS branch tracing and set the threshold of BTS
buffer as 1000. Once BTS buffer is full, it will trigger a system
interrupt, and our predefined interrupt handler will save BTS
buffer’s record, reset it, and resume BTS’s monitoring. In this
way, we do not lose any branch.

Another question is how to set up the “checkpoint”, so
that we can timely inspect the recorded branches. The re-
cent work [9] takes the strategy of 1-branch interruption; that
is, BTS has to be interrupted for security checking at every

control flow deviation instruction. However, this design will
become a performance bottleneck in our scenario. For exam-
ple, Obsidium packer’s trampoline code can execute up to
39,322 branches before reaching the target API. Our solution
is to enable NX bit for DLL’s memory pages, and we hook
page fault handler to copy recorded branch data for further
inspection. As shown in Figure 4, API-Xray’s implementation
consists of multiple kernel-level and user-level components.

4.5 Kernel Module
API-Xray’s kernel module is responsible for three main tasks.
First, it configures and enables BTS branch tracing. Second,
the kernel module hooks the related kernel functions that are
used to enable/disable and detect NX bit. In particular, we call
“ZwProtectVirtualMemory” and “ZwQueryVirtualMemory”
to enable or disable NX bit for DLL and non-DLL pages.
Prior to API Micro Execution, we only switch on NX bit for
the loaded DLL pages in the target process. When API Micro
Execution arrives at a DLL, it will trigger a page fault ( 2 in
Figure 4). We further discuss the reason for enabling/disabling
NX for non-DLL pages in §4.7. The benefit of our design is
that we can intercept user-level malware’s manipulation to NX
bit. Third, when a non-executable interruption is triggered in
DLL pages, our customized page fault handler will take the
following two actions: 1) notify the user module to save the
current stack frame ( 3 in Figure 4), which will be used in
§4.7 to verify whether the current branch points to the target
API; 2) copy BTS trace buffer to the user space for further
analysis and then reset BTS buffer ( 4 in Figure 4).

4.6 Process Filtering
The limitation of BTS tracing is that it is not process-specific.
In addition to the target process’s branch data, BTS buffer
may contain the branch data coming from other processes.
As we have the OEP memory, we know the memory range
of the current process, including loaded DLLs. Besides, we
also disassembled the OEP memory so that we know the
instruction at the source address of a BTS record. To filter
out the noise caused by other processes, we will search for
a branch chain that meets the following three criteria: 1)
for each pair (source and target) in the branch chain, both
source address and destination address are within our process
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Figure 4: The detailed architecture of API-Xray. The shaded boxes in red represent API-Xray’s functional modules.

memory range; 2) the instruction at the source address must
be a branch instruction, because the source address from a
different process may not correspond to a branch instruction
in the current process; 3) the last record in the branch chain
transfer the control flow from a non-DLL location (i.e., an
address in the trampoline code area) to an address located
within a DLL page range.

Among the collected branch chain, the first branch jumps
to the trampoline code area (either from an API callsite or
a DLL’s memory page); the last branch jumps to a DLL’s
memory page. The rest of branches represents the back-and-
forth jumps that occur within the trampoline code area. Based
on the collection of trampoline code addresses, which share
the same high bytes, we can quickly infer the base address
of the trampoline code. This information will also be used in
§4.7 to check a valid branch pointing to the target API. The
output of our process filtering is the last valid branch, as well
as the trampoline code’s base address ( 5 in Figure 4).

4.7 Destination Address Checking

This subsection discusses how to verify whether the desti-
nation address is located at the target API. Recall that when
the control flow arrives at a DLL, it does not necessarily
point to the target API. We need to manage two counterex-
amples: “Anti-debugging Routine” (Figure 2(c)) and “ROP
Redirection” (Figure 2(d)). For the rest of the cases shown in
Figure 2, they will pass our destination address checking.
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Figure 5: The stack frame of “Anti-debugging Routine.”

Anti-debugging Routine. Given the destination address
of a branch, we rule out the case of jumping to an anti-
debugging API using: 1) its stack frame when a DLL’s non-
executable interruption is triggered (as shown in Figure 5),
and 2) the trampoline base address. The current stack frame
of this anti-debugging API is prepared by the trampoline, and
the top of the stack stores the return address, which also points
to the trampoline code area. If the high bytes of this return
address matches the trampoline base address, we decide the
current branch does not point to the target API.

ROP Redirection. To detect this counterexample, we first
disassemble the instruction at the destination address; if the
instruction is one of “ret-like” instructions, it means current
control flow is caused by “ROP Redirection.” “Ret-like” in-
structions include the ret instruction and its semantically-
equivalent instructions (e.g., “pop x; jmp * x”) [14].

NX-bit Switch. For the above two cases that do not point
to the target API ( 6 in Figure 4), we will notify the kernel



NX-bit switch module to disable NX bit for DLL pages and
enable NX bit for the trampoline code. As a result, the exe-
cution of the above two cases can resume. When the control
flow goes back to the trampoline, it will also trigger a non-
executable page fault. At this time, our page fault handler will
switch the NX bit again; that is, it switches on NX bit for
DLL pages and switches off NX bit for the trampoline code.
In this way, we can enable NX bit for DLL pages whenever
the control flow reenters them.

1-Branch Interrupt. We have to consider the case that
the control flow does not go back to the trampoline code. A
skilled attacker can create ROP-chain inside the DLL to jump
to the target API directly. Since we have disabled NX bit for
DLL pages to resume the “ROP Redirection” execution, this
attack will not trigger the page fault when the control flow
reaches the target API. Our solution is to reset the size of BTS
buffer as one when we detect “ret-like” instructions. This
enables our BTS-mechanism to capture each branch in the
ROP-chain inside the DLL, but at the cost of higher overhead.
In this way, we ensure one of our hardware-mechanism (NX
or BTS) can capture the branch to the target API in any case.

4.8 Import Table Reconstruction
If the destination address resides within the target API’s code
( 7 in Figure 4), the next step is to resolve the API name
from this address. Note that if the packer applies the stolen
code technique (Figure 2(e)), the destination address will not
be the entry point of the target API, but in the middle of the
API code. Therefore, we identify API name not by its entry
point, but by a memory range of this API. More concretely,
we first scan the OEP memory to obtain each loaded DLL’s
memory range. For each DLL, we scan its export address
table from the DLL header to get all API names and calculate
their memory ranges. After that, we relate the destination
address with a particular API name by checking whether the
destination address is located within the memory range of an
API. After we complete all possible API Micro Executions
and resolve the API name for each API callsite, we will rebuild
a new IAT as well as the associated INT. Furthermore, we
will recover the reference to the new IAT & INT from the
PE header, so that they are reachable for static analysis and
Windows PE loader. For the cases of “Rewrite Original API
Call ” (Figure 2(f)), we also need to rewrite direct calls back
to indirect calls through the new IAT reference. At last, our
recovered PE header is stitched together with the unpacked
code to assemble an executable program ( 8 in Figure 4).

5 Evaluation

API-Xray automates the import table reconstruction for unpac-
ked Windows programs on the x86/x64 platform. We conduct
a set of experiments to evaluate API-Xray’s effectiveness
from four aspects. 1) API-Xray outperforms existing work in

Table 4: The API coverage evaluation results with the ground
truth dataset. API obfuscation type numbers (Column 2) re-
present: 1) IAT Redirection; 2) Rewrite API Callsite; 3) Sto-
len Code; 4) ROP Redirection; 5) Anti-debugging Routine.
We test four representative methods: BinUnpack (BU) [15],
Ugarte-Pedrero et al.’s work in S&P’15 (SP) [73], RePEcon-
struct (RP) [44], and API-Xray (AX)).

Packers API Obfuscation #APIs
Types BU SP RP AX

Non-obfuscation Packers
UPX 348 56 348 348
API Obfuscation Packers
Yoda’s Crypter 1 102 56 124 348
Yoda’s Protector 1 102 56 124 348
TELock 1 213 56 235 348
ZProtect 1 0 56 56 348
Enigma 1 23 56 59 348
ASProtect 2 178 32 202 348
PESpin 1,3 119 18 126 348
Armadillo 1,5 220 19 231 348
PEP 1,2,5 41 17 53 348
Obsidium 1,4,5 0 15 15 348
PELock 1,3,4 0 19 20 348
Themida
Packing model 2,3 0 0 0 348
Partial code revealing 2,3 0 0 0 348

terms of better API coverage and API-obfuscation resistance.
2) Compared with LBR and IPT, we demonstrate that our
choice of BTS is the only viable option for import table recon-
struction. 3) We report our experience of testing large-scale
packed malware in the wild. Especially, API-Xray advances
unknown/new malware detection and analysis.

5.1 Comparative Evaluation

Our study in §3 has found that 12 prevalent packers apply
different API obfuscation schemes. To set up a controlled ex-
periment, we apply these 12 packers to a sample of notorious
Zeus Trojan. Zeus Trojan, also known as Zbot, is often used to
steal financial data from the victim machines and install ran-
somware [28]. Zeus has been on Check Point’s Top10 wanted
malware list for many years [71]. Our motivation for testing
Zeus is based on the two following arguments. First, Zeus is
the most sophisticated botnet that the FBI has ever attempted
to disrupt [30]. It has 348 APIs, which is significantly more
than other typical malware samples (e.g., about 114 APIs
for WannaCry and about 168 APIs for Conficker). Second,
Zeus is controlled by different commands from the Network,
which means it has many execution paths. These execution
paths cause the dynamic-based import table reconstruction
approaches to recover limited APIs (see Section 2.2). In our
evaluation, we compile Zeus binary code§ with its source
code in Windows 10.

We compare API-Xray with three representative import ta-
ble reconstruction methods: BinUnpack [15], Ugarte-Pedrero

§MD5: 9e722f9c2e344f683b5e9c37b1035b95



et al.’s work [73], and RePEconstruct [44]. As we summari-
zed in Table 1, these three methods represent memory static
analysis, dynamic, and hybrid analysis, respectively. Besides,
we also need a generic unpacking tool to provide the OEP
memory as the input to these import table reconstruction met-
hods. Due to the high performance of BinUnpack [15], we
use BinUnpack’s OEP identification heuristics to halt the pro-
cess when the OEP is reached. Our testbed is a laptop with
an Intel Core i7-8550 processor (quad-core, 1.80GHz) and
16GB memory, running Windows 10.

5.1.1 API Coverage

The 12 packers that apply API obfuscation are shown in the
first column of Table 4. In addition, we use UPX packer
to represent the packer that does not apply any obfuscation.
Themida [57] is a sophisticated commercial code obfuscator.
We use Themida to evaluate two complicated packer cases.
First, we enable Themida’s packing model to pack Zeus’s
binary code. The distinct feature of Themida packer is that
the unpacking routine code is further obfuscated by code
virtualization. Second, as the source code of Zeus is available,
we apply Themida’s optional functionality: “Encode Macro”.
“Encode Macro” allows users to mark a region of source code
that needs to be encrypted. At run time, Themida will first
decrypt the code inside the macro, execute it, and then encrypt
it again. We treat this “Encode Macro” model as the partial
code revealing packer, which is a well-known challenge for all
generic unpackers [7], because only a portion of the original
code is revealed during any given unpacking time window.

We enable Themida’s “Encode Macro” option to protect
the major functions of Zeus. This means every time only one
function’s OEP memory is available for us to analyze. We
handle this tough case using the following steps: 1) when the
unpacking tool returns the OEP memory for each function, we
resolve API names for this function and dump this function’s
process memory; 2) we collect all resolved API names to
reconstruct import tables; 3) we reassemble all function pro-
cess memory dumps as a single consistent code image, which
is further stitched together with reconstructed import tables
from step 2 to generate an executable Zeus.

Table 4’s second column shows the API obfuscation types
adopted by these packers. We can see that the “IAT Redi-
rection” is the most common API obfuscation type. Columns
3∼6 show the number of APIs that are restored by the four tes-
ted methods. We treat this number as the metrics to measure
the completeness of import table reconstruction tools.

The original Zeus has 348 APIs in its import table. As a
static-only method, BinUnpack [15] is brittle when handing
API obfuscation schemes, so BinUnpack fails to resolve API
names for ZProtect, Obsidium, PELock, Themida. For the
rest of packers, we notice that BinUnpack can resolve part
of API names. We look into these packers and find that these
packers only obfuscate APIs exported from particular DLLs.

Table 5: The comparison of API-obfuscation resistance. “ ”
means this tool can defeat an API obfuscation type.

Obfuscation Type BinU
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API-X
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IAT Redirection    
Rewrite API Callsite    
Stolen Code  
ROP Redirection  
Anti-debugging Routine  

For example, Yoda’s Crypter packer only obfuscates the APIs
exported by kernel32.dll, user32.dll, and advapi32.dll, but not
other APIs. As a result, BinUnpack can restore 102 APIs that
are not obfuscated by Yoda’s Crypter packer.

For Ugarte-Pedrero et al.’s work [73], as a dynamic-only
method, it can resolve at most 56 API names for nine packers,
because only these 56 APIs are called during a single execu-
tion path. Of course, we can expect Ugarte-Pedrero et al.’s
work to cover more APIs after it explores more paths with
new inputs, but its design does not deal with all API obfusca-
tion types. For the left four complex packers, Ugarte-Pedrero
et al.’s work performed even worse because it is evaded by
“Stolen Code,” “ROP Redirection,” and “Anti-debugging Rou-
tine.” For RePEconstruct [44], although it can cover more
APIs for some packers due to its hybrid analysis style, we can
see a precipitous decline for the advanced packers that incor-
porate multiple anti-analysis methods. In contrast, API-Xray
succeeds in resolving API names for all tested packers.

5.1.2 Resistance Against API Obfuscation Schemes

Next, we zoom in on the resistance against different API
obfuscation schemes, and the results are shown in Table 5.
BinUnpack’s advantage lies in quickly determining the end
of unpacking, but its API name resolution function is weak.
Our evaluation shows that BinUnpack does not handle any
API obfuscation schemes. For Ugarte-Pedrero et al.’s work
and RePEconstruct, their dynamic analysis style can naturally
defeat “IAT Redirection” and “Rewrite API Callsite.” How-
ever, they can be cheated by the “Stolen Code” as well as two
obfuscation schemes that we first unveil in this paper: “ROP
Redirection” and “Anti-debugging Routine.” They capture
the API that they first encounter in a loaded DLL instead
of the real API. API-Xray makes a clean sweep in the API
obfuscation resistance comparison.

5.2 LBR vs. IPT vs. BTS

Since for modern Intel processors, there are three mecha-
nisms to trace branch instructions, including Last Branch
Record (LBR), Branch Trace Store (BTS), and Intel Proces-
sor Trace (IPT) (see §2.3). We conduct a separate experiment



to compare BTS with another two similar hardware tracing
mechanisms: LBR and IPT.

Table 6 shows our evaluation results. Column 1 lists all of
the packers we tested. Column 2 shows the maximum number
of control flow deviation instructions from an API callsite to
its target API. We can see that some numbers have already
exceeded the limit of LBR stack size (16 or 32), and the peak
value (39,322) comes from Obsidium packer. Column 3 pre-
sents the last branch instruction to the target API. Note that
some packers use “jmp/call immediate” addressing (the in-
struction in bold) to branch to the target API, but IPT does not
record these instructions. Column 4∼6 presents the running
time when API-Xray adopts LBR, IPT, and BTS to monitor
control flow, respectively. For each version, we report two
overhead numbers. The first number represents the running
time of hardware tracing mechanism, and the second one is
the total running time for import table reconstruction. The
blank value means this version fails to restore a complete
import table. Note that IPT’s running time includes both on-
line logging and expensive offline decoding. The overhead
of BTS-based version is between LBR-based and IPT-based
versions, but only BTS-based version succeeds in all cases.

The LBR-based version cannot restore a complete import
table if the “Maximum Branch Times” exceeds 32, and the
IPT-based version fails if the “Last Branch Instruction” is a
direct unconditional jump (e.g., jmp/call immediate). Since
BTS provides a complete branch tracing capability that cannot
be offered by LBR or IPT, we use BTS as our branch tracing
mechanism to defeat API obfuscation. Considering that API-
Xray frees security analysts from the burden of manually
rebuilding import tables, its overhead is moderate.

5.3 Large-Scale Evaluation with Packed Mal-
ware In the Wild

From July 2019 to December 2019, API-Xray has been de-
ployed into an anti-malware company for large-scale evalua-
tion with packed malware in the wild. API-Xray is integrated
into a commercial unpacking tool to assist security professi-
onals in malware offline analysis. We have collected a total
of 341,269 packed malware binaries in the production envi-
ronment. 74.6% of them are protected by known packers, and
the other (25.4%) are protected by custom packers.

5.3.1 API Obfuscation Distribution

Table 7 shows the distribution of various API obfuscation
types in our large-scale dataset. Similar to our observation
in Table 4, the “IAT Redirection” is the most popular API
obfuscation type (36.5%). The type of “ROP Redirection”
only accounts for less than 7% due to its high development
cost. Considering a packer can combine different API obfus-
cation types, we also count the number of API obfuscation
schemes used in a packer. As shown in Figure 6, 48.1% of
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One Type
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Figure 6: The statistics of API obfuscation types used by
packed malware in the wild.

packed samples do not apply any API obfuscation scheme.
The remaining 51.9% of them (total 177,119) apply at least
one API obfuscation type, and 2.6% of packed samples apply
the maximum four API obfuscation types.

5.3.2 Evaluation Results

For these 177,119 packed malware samples that are also pro-
tected by API obfuscation schemes, we apply API-Xray to
their OEP memory to reconstruct import tables. Figure 7 pre-
sents the cumulative distribution of our analysis results. We
first count the number of branches recorded by API-Xray,
as this number reflects the complexity of the control flow
between an API callsite and its target API. As shown in Fi-
gure 7(a), about 29.7% of samples (total 52,604) generate
more than 32 branches, which exceed the size of LBR stack.

However, for these packed malware samples, we do not
have their source code or the binary code with no packer
applied as a reference. To evaluate whether API-Xray recon-
structs import tables successfully, we use two heuristics.

Heuristics 1. We use our custom IDA Pro plugin to scan
API-Xray’s outputs to check whether there exists an API call
with an unresolved name. If yes, we consider this sample
has an incomplete import table. In our evaluation, we find
that API-Xray succeeds for 98.4% of samples (total 174,285).
We investigate the remaining 1.6% of samples and find out
that these samples call some APIs exported from custom
DLLs, but they are absent in the our testing environment.
Figure 7(b) shows the number of APIs restored by API-Xray
and the number of total APIs, respectively. The two lines in
Figure 7(b) are very close to each other, which means API-
Xray only misses a very small portion of custom APIs.

Heuristics 2. We also evaluate the executability of API-
Xray’s outputs. We run each unpacked PE file in three state-of-
the-art malware sandboxes: SecondWrite [67], Hybrid Ana-
lysis [22], and VMRay Analyzer [78]. We select them for
two reasons: 1) they all report whether a sample is malicious
or not; 2) since these three sandboxes apply different anti-
evasion methods, a malware sample is possible to evade one
of them but hard to evade all of them. As shown in Figure 8,



Table 6: The comparison of three hardware tracing mechanisms.

Packers #Max-Branches Last Branch Running Time (seconds)
LBR IPT BTS

Yoda’s Crypter 14 jmp imm1 (0.11, 13.2) (7.3, 16.7)
Yoda’s Protector 10 jmp imm (0.11, 13.8) (7.2, 17.2)
TELock 14 ret (0.12, 9.4) (39.4, 52.6) (7.8, 17.1)
ZProtect 10 ret (0.11, 13.4) (37.0, 50.3) (7.4, 17.0)
ASProtect 45 call eax (43.1, 55.4) (8.6, 16.6)
PESpin 13 jmp imm (0.13, 13.6) (8.5,17.7)
Armadillo 28 call dword [] (0.13, 10.8) (43.4, 54.1) (8.6, 15.1)
Enigma 12 call imm1 (0.13, 14.6) (10.1, 19.5)
PEP 13 jmp imm (0.13, 11.0) (5.3, 13.5)
Themida 60 jmp imm (9.2, 18.6)
Obsidium 39,322 ret/call ecx (130.8, 161.4) (26.1, 43.6)
PELock 92 call imm (14.4, 25.6)
1 e.g., jmp 0x73dc17c8 and call 0x73dc17c8
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Figure 7: The cumulative distribution results of evaluating large-scale packed malware in the wild.

Table 7: The distribution of API obfuscation types.

API Obfuscation Type Distribution
Type 1: IAT Redirection 36.5%
Type 2: Stolen Code 12.7%
Type 3: Rewrite API callsite 11.8%
Type 4: Anti-debugging Routine 7.8%
Type 5: ROP Redirection 6.9%

84.4% of unpacked PE files (total 149,488) are labeled as
“Malicious” by at least one of the three sandboxes.

Two Evaluation Heuristics Comparison. Compared
with the results calculated by Heuristics 1, we know that
24,797 unpacked PE files do not exhibit malicious behaviors
in any sandbox, even they have complete import tables. Upon
further investigation, we categorize them into three classes.

First, we find 16,849 samples crashed at run time. For these
samples, we utilize a “Just-In-Time” debugger [26] to capture
the crash address automatically. We find that the crash occurs
at the address around the original entry point (OEP) but not at
any API callsite. It indicates that the unpacking tool does not
accurately identify the unpacked programs’ OEPs. The root
cause is that some custom packers apply heavyweight code
obfuscation around the OEP area to undermine the existing
OEP search heuristics. We leave addressing this problem as

177,119 
149,488
 (84.4%) 
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(53.9%) 
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Figure 8: The number of recovered PE files exhibiting malici-
ous behaviors in three different sandboxes.

our future work. Second, we find 7,789 samples are trigger-
based malware. They do not perform any malicious actions
because the trigger condition is not met (e.g., revealing ma-
licious behavior on a particular date). Finally, 159 unpacked
malware samples are able to detect all of the three sandboxes
and then hide their malicious behaviors.

VirusTotal Detection Number. Security analysts also
find that, without applying API-Xray, 7,514 pieces of unpac-
ked malware are not well recognized by anti-virus scanners.
We treat these 7,514 samples as unknown or new malware



Table 8: The case study of an unknown malware sample.

Sample #APIs #VirusTotal
Unpacked Code API-Xray Unpacked Code API-Xray

Unknown Trojan1 0 63 2 33
1 MD5: d4f377c849b86d5ca89776bc56eea832.

because they meet the following two criteria: 1) less than
10% of anti-virus scanners from VirusTotal [76] label them as
malware; 2) if they have malware labels, the labels are either
“Generic” or “Heuristic”, rather than a specific malware name
(e.g.,“Zeus” or “WannaCry”). Figure 7(c) shows the VirusTo-
tal detection numbers for these unknown malware before/after
applying API-Xray. As API-Xray recovers the metadata of
imported APIs that can provide valuable insight into the ma-
licious intention, 8 to 32 additional anti-virus scanners (the
average number is 22) are able to recognize the unknown
malware samples.

We take an unknown Trojan sample as an example to de-
monstrate that API-Xray improves the accuracy of unknown
malware detection. This sample stealthily downloads other
malicious files from a remote server, and then it installs
and executes the files. It uses “IAT Redirection” and “Anti-
debugging Routine” to hide API names, such as “InternetRe-
adFile” and “WinExec”. The malicious behavior of this sam-
ple hinges on the invocation of particular APIs, but its bi-
nary code exhibits no recognizable signatures, such as unique
strings or byte n-grams. Table 8 shows without the API infor-
mation, only two anti-virus scanners recognize this malware’s
unpacked code. After API-Xray recovers the 63 APIs of this
sample, the detection number of VirusTotal raises to 33.

6 Discussion

A perfect malware analysis solution is unattainable. The cyber
arms race between malware and defenders has transformed
into an intensive tug-of-war. Cybercriminals are motivated
to circumvent API-Xray once it is public. We do not assume
that evading API-Xray is strictly impossible, but it can pro-
hibitively increase malware developers’ cost. This section
discusses possible attacks to API-Xray, our countermeasures,
API-Xray’s limitations, and the application to Linux malware.

6.1 Possible Attacks and Countermeasures
Attacks to BTS. The BTS mechanism can only be manipula-
ted in the kernel. Starting with Windows 10 (version 1607),
Windows OS does not load any new kernel drivers unless they
are signed by Windows Hardware Dev Center program [13].
This mandatory driver signing enforcement leaves malware
with little wiggle room to hack into the OS kernel.

Attacks to NX bit. Unlike BTS mechanism, the NX bit
can be detected and manipulated at the user level. API-Xray’s
kernel module can intercept the detection and manipulation
from user-mode malware samples and deceive them by re-

Table 9: Detection & prevention to NX-bit attacks.

Attack Type Countermeasure Result
Detect NX
VirtualQuery ZwQueryVirtualMemory X
Disable NX
VirtualProtect ZwProtectVirtualMemory X
VirtualAlloc ZwAllocateVirtualMemory X

turning expected answers. For example, malware can use
API “VirtualQuery” to detect whether API-Xray has enabled
the NX bit for DLLs’ virtual memory pages. However, we
also hook its corresponding native API “ZwQueryVirtualMe-
mory”, in which we modify the return value to hide the NX bit.
Similarly, malware can call the API “VirtualProtect” or “Vir-
tualAlloc” to disable the NX bit [58]. This attack is prevalent
in ROP attacks [12, 59, 61, 66]. However, the VirtualProtect
and VirtualAlloc will call the related Windows native API
eventually: “ZwProtectVirtualMemory” and “ZwAllocateVir-
tualMemory”. To prevent this attack, we have hooked both
“ZwProtectVirtualMemory” and “ZwProtectVirtualMemory”
in our current design. Since disabling NX from the user level
can only be accomplished via “VirtualProtect” and “Virtua-
lAlloc” [80], our kernel-level hooking will protect API-Xray
from this attack. We have evaluated the detection and mani-
pulation attempts to the NX bit in the userspace. As shown in
Table 9, the API-Xray’s kernel module can defeat the attacks
to NX bit successfully.

Statically-Linked Library. If system libraries are stati-
cally linked into malware binary code, API-Xray cannot re-
solve API names because malware will never call APIs from
our monitoring system’s DLLs. However, we argue that static
linking is not an attractive option to spread malware. First,
it causes incompatibility problems under different Windows
versions. Second, static linking also compromises malware’s
portability, because it bloats program size drastically.

Stolen Function. Kawakoya et al. [41] describe an evol-
ved version of stolen code: instead of copying a few bytes
from the head of an API, it copies the whole body of an API.
We call it as “stolen function.” API-Xray will miss this case
because the control flow does not jump to the target API
at all. However, it is not a trivial task to copy all instructi-
ons of an API to another memory space and then execute
them smoothly. The stolen function has to relocate all related
position-dependent code in advance; otherwise, it will lead
to an execution crash. To counter the stolen function, we can
leverage the “Execute-no-Read” idea [5] to protect the DLL
memory pages as “no-Read.” When the target API function
is copied to a new location, it will be monitored by our page
fault handler. And then, we use the target API information
(name & address) to reconstruct import tables.

Argument-Sensitive Trampoline. The basic premise of
our API Micro Execution is that the trampoline code does
not depend on the particular API arguments. A determined
packer author can customize the trampoline code for each



Table 10: Running time (seconds) of fake-API-call DoS at-
tacks. They have relatively small impact on API-Xray.

Sample API-Xray (s) Relative SlowdownDisable Enable
Yoda’s Protector 0.7 17.2 23.6X
Yoda’s Protector + (Fake API Call)×103 0.8 17.3 20.6X
Yoda’s Protector + (Fake API Call)×106 121.0 153.1 26.5%
Yoda’s Protector + (Fake API Call)×109 121,472 123,648 1.8%

API callsite. For example, only when the trampoline code
checks the validity of API arguments (e.g., a specific string
or HANDLE value), it transfers the control flow to the target
API. In this case, we have to resort to expensive symbolic
execution to explore a feasible path to the target API.

Fake API Calls. An intuitive attack to any API-monitoring
based security measures is the so-called “Fake API Calls” [15].
The packer can invoke many iterations of fake or null API calls
before calling the target API. This will increase API-Xray’s
overhead because we have to check the destination address
for every fake API call. However, API invocations are much
expensive as well. BinUnpack [15] has quantitatively measu-
red the adverse impact of fake API calls and concluded that
too many fake API calls impose dramatically large overhead
to the packed malware itself. Inspired by BinUnpack [15], we
also simulated a fake-API-call Denial-of-Service (DoS) attack
by modifying the open-source Yoda’s Protector packer [23].
As shown in Table 10, the API-Xray’s overall running time
does not increase significantly when the fake API call iterati-
ons are less than 106. When the iteration number reaches 109

times, the custom Yoda’s Protector packer’s execution will
be occupied by the large number of API invocations, and the
runtime overhead will increase by five orders of magnitude;
while API-Xray only incur 1.8% relative slowdown to the
custom Yoda’s Protector packer. Clearly, the accumulative
overhead from a plethora of fake API calls far outstrips the
deterioration of API-Xray’s performance.

6.2 Limitations

API-Xray fails to produce an executable PE file from the
unpacked code for the following two cases.

Custom DLLs. We find that 1.6% of malware samples
call APIs exported from custom DLLs instead of standard
Windows DLLs. Unfortunately, API-Xray cannot restore im-
port tables exported from custom DLLs, which are absent in
our testing environment.

OEP Obfuscation. 9.5% of unpacked PE files with com-
plete import tables crashed at run time. The reason is OEP
obfuscation schemes cause existing generic unpacking tools
to miss the real OEP locations. For example, many unpacking
tools use the “stack balance” detects OEP by checking whet-
her the stack is similar to that when a program is just loaded
into memory. However, some custom packers do not satisfy
this rule. Dealing with OEP obfuscation is an orthogonal
question to API-Xray, and we leave it as our future work.

6.3 Application to Linux Malware

API-Xray is designed to work on Intel CPUs, and both Win-
dows and Linux OS provide the interface to manipulate BTS
and NX bit. Besides, Linux’s executable file format also has
a similar import table structure. According to Cozzi et al.’s
study [21], Linux malware is not as complex as Windows
malware. Most packed Linux malware samples are protected
by UPX packer or UPX-like variants, which do not apply any
API obfuscation scheme. If new Linux packed malware be-
comes as complex as its Windows counterpart, API-Xray’s
technique is generalized to Linux malware as well.

7 Conclusion

API-Xray is the first hardware-assisted solution towards brid-
ging the gap of generic binary unpacking—automated import
table reconstruction. API-Xray complements the state-of-art
binary unpacking tools by producing a standard PE file that
can be executed and analyzed independently. Security analysts
utilizing API-Xray will enjoy a simpler and more streamlined
malware analysis than ever before.
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