
www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  21

SECURITY

Strings Considered Harmful
E R I K P O L L

Buggy parsers are an important source of security vulnerabilities
in software: many attacks use malicious inputs designed to exploit
parser bugs. Some security flaws in input handling do not exploit

parser bugs, but exploit correct—albeit unexpected—parsing of inputs caused
by the forwarding of inputs between systems or components. This article,
based on an earlier workshop paper [11], discusses anti-patterns and rem-
edies for this type of flaw, including the anti-pattern mentioned in the title.

LangSec and Parsing Flaws
The LangSec paradigm [3, 8] gives good insights into the root causes behind the majority of
security problems in software, which are problems in handling inputs. It recognizes that the
input languages used play a central role. More particularly, it identifies the following root
causes for security problems: the sheer number of input languages that a typical application
handles; their complexity; their expressivity; the lack of clear, unambiguous specifications
of these languages; and the handwritten parser code (which often mixes the parsing and
subsequent processing, in so-called shotgun parsers, where input is parsed piecemeal and in
various stages scattered throughout the code). All this leads to parser bugs, with buffer over-
flows in processing file formats such as Flash or network packets for protocols such as TLS
as classic examples. It can also lead to differences between parsers that can be exploited,
with, for example, variations in interpreting X509 certificates [6] as a result. In all cases,
these bugs provide weird behavior—a so-called weird machine, in LangSec terminology—
that attackers can try to abuse.

Much of the LangSec research therefore concentrates on preventing parsing flaws: by having
simpler input languages; by having clearer, formal specs for them; and by generating parser
code to replace handwritten parsers, using tools such as Hammer (https://github.com
/UpstandingHackers/hammer), Nail [2], or protocol buffers (https://developers.google.com
/protocol-buffers). For a more thorough discussion of LangSec anti-patterns and remedies,
see [8].

Forwarding Flaws
However, not all input-related security flaws are due to buggy parsing. A large class of flaws
involves the careless forwarding of malicious input by some front-end application to some
back-end service or component where the input is correctly—but unexpectedly and uninten-
tionally—parsed and processed (Figure 1). Classic examples are format string attacks, SQL
injection, command injection, path traversal, and XSS.

In the case of a SQL injection attack, the web server is the front end and SQL database is
the back end. In the case of a format string attack, the back end is not a separate system like
a database but consists of the C system libraries. In an XSS attack, the web browser is the
back end and the web server the front end; this can get more complex, e.g., in reflected XSS
attacks, where malicious input is forwarded back and forth between browser and server
before finally doing damage in the browser.

Erik Poll is Associate Professor
at Radboud University Nijmegen.
His research focuses on the use
of formal methods to analyze
the security of systems, espe-

cially of the software involved. Application
areas that provided case studies for his re-
search include smart cards, security protocols,
payment systems, and smart grids.
erikpoll@cs.ru.nl

https://github.com
https://developers.google.com

22    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

SECURITY
Strings Considered Harmful

Forwarding attacks do not (necessarily) exploit parser bugs: the
back-end service, say the SQL database, may well parse and pro-
cess its inputs correctly. The problem is not that this SQL func-
tionality is buggy but rather that it can be triggered by attackers
that feed malicious input to the front end. Unlike attacks that
exploit parsing bugs, where attackers abuse weird behavior intro-
duced accidentally, attackers here abuse functionality that has
been introduced deliberately but which is exposed accidentally.

Forwarding flaws are also called injection flaws, e.g., in the
OWASP Top Ten, where they occupy the first spot. We prefer the
term “forwarding flaws” because in some sense all input attacks
are injection attacks; the forwarding aspect is what sets these
input attacks apart from the others.

Input or Output Problem?
Forwarding flaws involve two systems—a front-end application
and a back-end service—and both input and output, since the
malicious input to the front end ultimately ends up as output
from the front end to the back end. This not only introduces the
question of how to tackle this problem but also the question of
where to tackle it. Should the front end prevent untrusted input
from ending up in the back end, and if so, should it sanitize data
at the program point where the data is output to the back end, or
should it do that earlier, at the program point where it received
the original malicious input? Or should the back end simply
not provide such a dangerously powerful interface to the front
end? We can recognize anti-patterns that can lead to forward-
ing flaws, or to bad solutions in tackling them, as well as some
remedies to address them in a structural way.

Anti-Pattern: Input Sanitization
There are very different ways to treat invalid or dangerous input.
It can be completely rejected or it can be sanitized. Sanitiza-
tion can be done by escaping or encoding dangerous characters
to make them harmless, typically by adding backslashes or
quotes, or by stripping dangerous characters and keywords. A

complication here is that ideally one would like to validate input
at the point where the input enters an application, because at
that program point it is clear whether such input is untrusted or
not. However, at that point we may not yet know in which context
the input will be used, and different contexts may require differ-
ent forms of escaping. For example, the same input string could
be used in a path name, a URL, an SQL query, and in HTML text,
and these contexts may require different forms of escaping.

Because escaping is context-sensitive in this way, it is well
known that using one generic operation to sanitize all input is
highly suspect, as one generic operation is never going to provide
the right escaping for a variety of back-end systems. This also
means that input sanitization, i.e., sanitization at the point of
input rather than at the point of output, is suspect since the con-
text typically is not known there.

The classic example here is the infamous PHP magic quotes
setting, which caused all incoming data to be automatically
escaped. It took a while to reach consensus that this was a bad
idea: magic quotes were deprecated in PHP 5.3.0 and finally
removed in PHP 5.4.0 in 2012.

Anti-Pattern: String Concatenation
A well-known anti-pattern in forwarding attacks is the use of
string concatenation. Concatenating several pieces of data, some
of which are user input, and feeding the result to an API call, as
is done in dynamic SQL queries, is the classic recipe for disaster.

Given that the LangSec approach highlights the importance
of parsing, it is interesting to note that string concatenation is
a form of unparsing. Indeed, the whole problem in forwarding
attacks is that the back-end service parses strings in a different
way than the front end intended.

Anti-Pattern: Strings
We would argue that a more general anti-pattern than the use of
string concatenation for dynamic queries is the use of strings at
all. There are several reasons why heavy use of strings can spell
trouble:

◆◆ Strings can be used for all sorts of data: usernames, email
addresses, file names, URLs, fragments of HTML, pieces of
JavaScript, etc. This makes it a very useful and ubiquitous data
type, but it also causes confusion: from a generic string type, we
cannot tell what the intended use of the data is or, for instance,
whether it has been escaped or validated.

◆◆ Strings are by definition unparsed data. So if a program uses
strings, it typically has to do parsing at runtime. Much of this
parsing could be avoided if more structured forms of data were
used instead. The extra parsing creates a lot of room for trouble,
especially in combination with the point above, which tells us
that the same string might end up in different parsers.

Figure 1: Processing vs. forwarding flaws

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  23

SECURITY
Strings Considered Harmful

The shotgun parsing that the LangSec literature warns against,
where partial and piecemeal parsing is spread throughout an
application, also inevitably involves the use of strings, namely for
passing around unparsed fragments of input.

◆◆ String parameters often bring unwanted expressivity. Interfaces
that take strings as a parameter often introduce a whole new
language (e.g., HTML, SQL, the language of pathnames, OS
shell commands, or format strings), with all sorts of expressive
power that may not be necessary and which only provides a
security risk.

In summary, the problem with strings is that it is one generic
data type, for completely unstructured data, and for many kinds
of data, obscuring the fact that there are many different lan-
guages involved, possibly very expressive ones, each with its own
interpretation. Of course, others have warned about the use of
strings before, e.g., [1].

The disadvantages above apply equally to char pointers in C,
string objects in C++, or String objects in Java. Of course, for
security it is better to use memory-safe, type-safe, or immutable
and hence thread-safe data types rather than more error-prone
versions.

Remedy: Reducing Expressive Power
An obvious way to prevent forwarding flaws, or at least mitigate
the potential impact, is to reduce the expressive power exposed
by the interface between the front end and the back end.

For SQL injections this can be done with parameterized queries
(or with stored procedures, provided that these are safe). The use
of parameterized queries reduces the expressive power of the
interface to the back-end database, and it reduces the amount of
runtime parsing. So clearly this mechanism involves key aspects
highlighted in the LangSec approach, namely expressivity and
parsing.

Remedy: Types to Distinguish Languages and
Formats
Different types in the programming language can be used to
distinguish the different languages or data formats that an appli-
cation handles. These types reduce ambiguity: ambiguity about
the intended use of data and ambiguity about whether or not it
has been parsed and validated. This then also reduces the scope
for unintended interactions.

Note that standard security flaws such as double decoding bugs
or problems with null terminator characters in strings also
indicate confusion about data representations that use of a type
system could—and should—prevent.

For example, an application could use different types for URLs,
usernames, email addresses, file names, and fragments of
HTML. The type checker can then complain when a username
is included inside HTML and force the programmer to add an
escaping function to turn a username into something that is safe
to render as HTML.

For data that is really just a string, like a username, one might
use a struct or object with a single string field. (Type annota-
tions, as exist in Java for example, could also be used to distin-
guish different kinds of strings [10].) However, for structured
data, say a URL, the type would ideally not just be a wrapper for
the unparsed string but, instead, an object or struct with fields
and/or methods for the different components, such as the proto-
col, domain, path, etc., to reduce the amount of code that handles
data in unparsed form.

When data is forwarded between components inside an applica-
tion or between applications written in the same programming
language, data can be forwarded “as is,” with all type infor-
mation preserved and without the need for any (un)parsing.
However, when data is exchanged with external systems, it may
have to be serialized and deserialized. Here the risk of parsing
bugs re-emerges, and the classic LangSec strategies to avoid
these should be followed by, ideally, generating the code for (de)
serialization from a formal spec.

Remedy: Types to Distinguish Trust Levels
Types can also be used for different trust levels. This then allows
information f lows from untrusted sources in the code to be
traced and restricted. An example would be to use different
types for trusted string constants hard coded in the application
and for untrusted (aka tainted) strings that stem from user input
to then only allow the former to be used as parameters to certain
security-sensitive operations.

Efforts at Google to prevent XSS in web applications [7] use
types in this way (https://github.com/google/safe-html-types
/blob/master/doc/index.md). For instance, it uses different
types to distinguish

◆◆ URLs that can be used in HTML documents or as arguments
to DOM APIs, but not in contexts where this would lead to the
referred resource being executed as code, and

◆◆ more trusted URLs that can also be used to fetch JavaScript
code (e.g., by using them as scr of a script element).

A more recent proposal to combat XSS, called Trusted Types
(https://github.com/WICG/trusted-types), extends Google’s
approach to fighting XSS using types by replacing all string-
based APIs of the DOM with typed APIs. This approach tackles
the root cause that makes it so hard to deal with the more com-
plicated forms of (DOM-based) XSS: the ubiquitous use of string
parameters in the DOM APIs.

https://github.com/google/safe-html-types
https://github.com/WICG/trusted-types

24    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

SECURITY
Strings Considered Harmful

The two ways to use types—to distinguish different kinds of
data or different trust levels—are of course orthogonal and can
be combined. Using trust levels for security goes back to work on
information flow in the 1970s [4]. It has been used in many static
and dynamic analyses over the years, including many security
type systems and source code analyzers, and has given rise to a
whole research field of language-based information-flow secu-
rity [12].

Clearly, the notion of information flow goes to the heart of what
forwarding flaws are about. A type system for information flow
is precisely what can solve the fundamental problem of keep-
ing track of whether data has been or should be validated or
sanitized. Instead of just tracking untrusted data to prevent
malicious input from being forwarded to places where it can do
damage, type systems for information flow can also be used to
track confidential information to prevent information leaks
(see, e.g., [5]).

Beyond Types: Programming Language Support
Instead of using the type system of a programming language
to distinguish the different languages and data formats that an
application has to handle, one can go one step further and pro-
vide native support for them in the programming language. This
approach is taken in Wyvern [9], called a type-specific program-
ming language by the designers.

An added advantage is that the programming language can
provide more convenient syntax to tempt programmers away
from convenient but insecure coding styles. For example, it can
provide syntax for safe parameterized SQL queries that is just
as convenient as the unsafe dynamic SQL queries, with the nice
infix notation for string concatenation that programmers like.
The idea is that a type-specific programming language allows
any number of input and output languages to be embedded.
In the original use case of web programming, the embedded
languages would include SQL and HTML. These languages then
show up as different types in the programming languages, with
all the convenient syntax support.

Conclusion
Many of the remedies suggested by the LangSec paradigm focus
on eradicating parser bugs: e.g., insisting on clear specifications
of input languages, keeping these languages simple, generating
parsers from formal specs instead of handrolling written parser
code, and separating parsing and subsequent processing in an
attempt to avoid shotgun parsers.

However, these remedies are not sufficient to root out forward-
ing flaws, which can exist even if our code does not contain any
parser bugs. Fortunately, there are remedies to tackle forwarding
flaws, as discussed above, which already appear in the literature
and in practice:

◆◆ Using more structured forms of data than strings

◆◆ Using types, not only to distinguish different languages and
formats that are manipulated (e.g., distinguishing HTML from
SQL), but also to distinguish different trust assumptions about
the data (e.g., distinguishing untrusted user input from sani-
tized values or constants)

The (anti-)patterns we discussed all center around the familiar
LangSec themes of parsing and the expressive power of input
languages; the remedies try to reduce expressive power, reduce
the potential for confusion and mistakes in (un)parsing, or avoid
(un)parsing altogether.

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  25

SECURITY
Strings Considered Harmful

References
[1] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhil-
lon, C. Kern, T. Kohno, C. Landwehr, G. McGraw, B. Schoenfield,
M. Seltzer, D. Spinellis, I. Tarandach, and J. West, “Avoiding
the Top 10 Software Security Design Flaws,” Technical Report,
IEEE Computer Society Center for Secure Design (CSD), 2014.

[2] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for
Parsing and Generating Data Formats,” ;login:, vol. 40, no. 1
(USENIX, 2015), pp. 24–30: https://www.usenix.org/system​
/files/login/articles/login_feb15_06_bangert.pdf.

[3] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and
A. Shubina, “Exploit Programming: From Buffer Overflows to
Weird Machines and Theory of Computation,” ;login:, vol. 36, no.
6 (USENIX, 2011), pp. 13–21: https://www.usenix.org/system​
/files/login/articles/105516-Bratus.pdf.

[4] D. E. Denning and P. J. Denning, “Certification of Programs
for Secure Information Flow,” Communications of the ACM, vol.
20, no. 7, 1977, pp. 504–513: https://www.cs.utexas.edu/~shmat​
/courses/cs380s/denning.pdf.

[5] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F.
Roesner, K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines,
and E. X. Wu, “Collaborative Verification of Information Flow
for a High-Assurance App Store,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS ’14),
pp. 1092–1104: https://homes.cs.washington.edu/~mernst/pubs​
/infoflow-ccs2014.pdf.

[6] D. Kaminsky, M .L. Patterson, and L. Sassaman, “PKI Layer
Cake: New Collision Attacks against the Global X.509 Infra-
structure,” in Financial Cryptography and Data Security, vol.
6054 of LNCS (Springer, 2010), pp. 289–303: https://www.esat​
.kuleuven.be/cosic/publications/article-1432.pdf.

[7] C. Kern, “Securing the Tangled Web,” Communications of the
ACM, vol. 57, no. 9, 2014, pp. 38–47.

[8] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson,
“The Seven Turrets of Babel: A Taxonomy of LangSec Errors
and How to Expunge Them,” in Proceedings of the IEEE Confer-
ence on Cybersecurity Development (SecDev ’16), pp. 45–52:
http://langsec.org/papers/langsec-cwes-secdev2016.pdf.

[9] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and
J. Aldrich, “Safely Composable Type-Specific Languages,”
in ECOOP 2014—Object-Oriented Programming, vol. 8586 of
LNCS (Springer, 2014), pp. 105–130: http://www.cs.cmu.edu/​
~aldrich/papers/ecoop14-tsls.pdf.

[10] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M.
D. Ernst, “Practical Pluggable Types for Java,” in Proceed
ings of the 2008 International Symposium on Software Test-
ing and Analysis (ISSTA ’08), pp. 201–212: https://homes.cs​
.washington.edu/~mernst/pubs/pluggable-checkers-issta2008​
.pdf.

[11] E. Poll, “LangSec Revisited: Input Security Flaws of the
Second Kind,” in Proceedings of the IEEE Symposium on Secu-
rity and Privacy Workshops, 2018, pp. 329–334: http://spw18​
.langsec.org/papers/Poll-Flaws-of-second-kind.pdf.

[12] A. Sabelfeld and A. C. Myers, “Language-Based Informa-
tion-Flow Security,” IEEE Journal on Selected Areas in Commu-
nications, vol. 21, no. 1, 2003, pp. 5–19: https://www.cs.cornell​
.edu/andru/papers/jsac/sm-jsac03.pdf.

https://www.usenix.org/system/files/login/articles/login_feb15_06_bangert.pdf
https://www.usenix.org/system/files/login/articles/login_feb15_06_bangert.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.cs.utexas.edu/~shmat/courses/cs380s/denning.pdf
https://www.cs.utexas.edu/~shmat/courses/cs380s/denning.pdf
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf
http://langsec.org/papers/langsec-cwes-secdev2016.pdf
http://www.cs.cmu.edu/~aldrich/papers/ecoop14-tsls.pdf
http://www.cs.cmu.edu/~aldrich/papers/ecoop14-tsls.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf
http://spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf
https://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
https://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf

