
Nonce-Disrespecting Adversaries:
Practical Forgery Attacks on GCM in TLS

Hanno Böck1, Aaron Zauner2, Sean Devlin3, Juraj Somorovsky4 and Philipp Jovanovic5

1https://hboeck.de, hanno@hboeck.de
2SBA Research gGmbH, azauner@sba-research.org, lambda: resilient.systems, azet@azet.org

3Independent, seanpatrickdevlin@gmail.com
4Horst Görtz Institute for IT Security, Ruhr University Bochum, juraj.somorovsky@rub.de

5École Polytechnique Fédérale de Lausanne (EPFL), philipp.jovanovic@epfl.ch

Abstract
We investigate nonce reuse issues with the GCM block
cipher mode as used in TLS and focus in particular on
AES-GCM, the most widely deployed variant. With an
Internet-wide scan we identified 184 HTTPS servers re-
peating nonces, which fully breaks the authenticity of
the connections. Affected servers include large corpo-
rations, financial institutions, and a credit card company.
We present a proof of concept of our attack allowing to
violate the authenticity of affected HTTPS connections
which in turn can be utilized to inject seemingly valid
content into encrypted sessions. Furthermore, we discov-
ered over 70,000 HTTPS servers using random nonces,
which puts them at risk of nonce reuse, in the unlikely
case that large amounts of data are sent via the same ses-
sion.

1 Introduction

The Advanced Encryption Standard (AES) in Ga-
lois/Counter Mode (GCM), or short: AES-GCM [25, 6],
is currently the most widely used cipher for symmetric
(authenticated) encryption in the TLS protocol [4]. This
came as a consequence of the exposure of various weak-
nesses in many alternative symmetric TLS ciphers dur-
ing the past few years. The CBC mode was affected
by a whole series of attacks, including BEAST [5] (af-
fecting TLS 1.0), Lucky Thirteen [1] (affecting all ver-
sions, based on timing side-channels and the older Vau-
denay attack), POODLE [26] (only affecting SSLv3) and

0All source-code, scripts and accompanying documentation are
publicly available under CC0 1.0 license from https://github.com/
nonce-disrespect/nonce-disrespect/.

POODLE-TLS [23] (implementation bugs). All those
attacks did not exploit weaknesses of CBC per se, but
took advantage of the particular way how CBC was de-
ployed in TLS (implicit IVs, lack of strict padding and
MAC-then-Pad-then-Encrypt). Before TLS 1.2, the RC4
stream cipher was the only alternative to CBC-based ci-
phers but it had been long known for its weaknesses [9]
and eventually came under attack in TLS [2] as well.
The attacks against CBC-based ciphers can be mitigated
by careful implementations, however it has been shown
that these mitigations are extremely difficult to imple-
ment correctly [34]. It is not possible to mitigate the
weaknesses in RC4. The cryptographic community con-
cluded that both CBC and RC4 should be avoided and
later even prohibited use of RC4 in TLS [29] entirely.

With AES-GCM the TLS standard provides only one
widely available alternative to CBC and RC4. Techni-
cally, there are other options, such as CCM and GCM
in combination with block ciphers like Camellia, but all
of them lack widespread support. The OCB mode [21],
which by many is considered superior to GCM, suffered
from patenting issues for a very long time. Those prob-
lems prevented its wide deployment and only got re-
solved recently [36]. Another promising alternative is the
ChaCha20 stream cipher in combination with Poly1305
as authenticator which was released as an RFC [27] in
2015 and a specification as a TLS cipher mode will soon
be available as an RFC [22].

Despite currently being the most popular TLS cipher,
AES-GCM is not well received by the cryptographic
community. Niels Ferguson described potential attacks
on GCM with short authentication tags [8], Antoine Joux
published a critical comment during the standardization
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process of GCM [19], and several other cryptographers
recently described GCM as “fragile” [28, 12].

Many stream cipher-based crypto algorithms take,
next to a secret key and a message, a so-called nonce as
an additional input. Varying the nonce allows to gener-
ate multiple distinct cipher streams under the same secret
key and thus multiple messages can be encrypted safely.
If, however, the same nonce-key pair is ever repeated for
different messages, an attacker is able to learn the XOR
of the plaintext messages by XORing the corresponding
ciphertexts. This works since the used cipher streams are
identical (due to the same nonce-key pair) and therefore
cancel each other out. In summary this leads to a viola-
tion of the confidentiality of the affected messages.

Internally, GCM uses a counter mode-like construc-
tion and thus suffers from the above issues as well. In
the nonce reuse scenario, however, there is yet another
vulnerability on which we focus in this work: the “for-
bidden attack” by Joux [19] exploits nonce reuse to re-
construct the authentication key. This then leads to effi-
cient forgery attacks enabling the creation of seemingly
valid ciphertexts without knowledge of the secret master
key. In this paper we first show that several TLS imple-
mentations are vulnerable to nonce reuse attacks since
they use repeated nonces after a few server messages.
Second, we present results from our Internet wide scan
that identified more than 70,000 potentially vulnerable
servers. These servers generate nonces at random, which
makes the nonce reuse attacks possible after sending a
large amount of TLS records. For example, a server is
vulnerable with a 40% probability after sending 232 TLS
records (see Table 1). Our results motivate for the stan-
dardization of algorithms that resist nonce misuse and
the publication of errata on IETF documents with insuf-
ficiently secure nonce generation methods.

2 Background

In the following we briefly recap AES-GCM [25, 6] and
its application in TLS [4]. We note that the AES-GCM
specification allows for different initialization vector or
authentication tag lengths. We only concentrate on the
version of AES-GCM as it is used in TLS. The descrip-
tion applies to AES-128 and AES-256 since both have
equal input/output lengths.

2.1 AES-GCM
AES-GCM [6] is a block-cipher mode of operation
which provides authenticated encryption with associated
data (AEAD). It uses counter mode to encrypt plaintexts.
The resulting ciphertext is authenticated using a hash
function called GHASH which is based on a computa-
tion over the Galois field GF(2128).

We use the following notation:

a ‖ b Concatenation of strings a and b.

0s String consisting of s zero bits.

Pi The i-th plaintext block.

Ci The i-th ciphertext block.

Ai The i-th block of additional authenticated
data.

IV Initialization vector consisting of 96 bits (12
bytes).

cnt 4-byte long counter value.

Ji The i-th counter block, computed using con-
catenation of the IV and the counter value
cnt, cnt = (i+ 1) mod 232, to achieve 128
bits. J0 = IV ‖ 031 ‖ 1.

Enck(X) AES encryption of block X , with symmetric
key k.

GmulH(X) Multiplication H · X in Galois Field
GF(2128), with the irreducible polynomial
f = 1+α +α2 +α7 +α128.

T Authentication tag.

len(X) Bit-length of string X , represented by 64
bits.

The AES-GCM encryption process of a message con-
sisting of n blocks works as follows (see Fig. 1):

1. The encryptor generates a 96-bit long initialization
vector IV .

2. She generates 128-bit long counter blocks Ji, where
Ji = IV ‖ cnt and cnt = (i + 1) mod 232, for i ∈
{0, . . . ,n}.

3. She computes the i-th ciphertext block as follows:
Ci = Enck(Ji)⊕Pi. Note that the length of the last
ciphertext block Cn is equal to the length of the last
plaintext block Pn.

In order to generate the authentication tag T , the en-
cryptor computes a GHASH over the additional authen-
ticated data and the ciphertext:

1. The encryptor generates the hash key H =
Enck(0128).

2. Starting with X0 = 0, she computes Galois field
multiplications over the additional authenticated
data consisting of m blocks (note that the last block
is padded with zeros to achieve a 128-bit block
length):

Xi = GmulH(Xi−1⊕Ai), for i ∈ {1, . . . ,m} .

2



J0 J1 J2

Enck Enck Enck

P1 P2

C1 C2

GmulH GmulH GmulH

GmulH

A1 len(A) ‖ len(C)

T

X1 X2

X3

S

Figure 1: AES-GCM encryption computed using two plaintext blocks and one block of additional authenticated
data [25].

3. She executes Galois field multiplications over n ci-
phertext blocks:

Xi+m = GmulH(Xi+m−1⊕Ci), for i ∈ {1, . . . ,n} .

4. She executes the last multiplication using the bit-
lengths of A and C:

S = GmulH(Xm+n⊕ (len(A) ‖ len(C))) .

5. Finally, the encryptor computes the authentication
tag:

T = S⊕Enck(J0) .

The final output of this function is the ciphertext con-
catenated with authentication tag: C ‖ T . We refer to [6]
for more details.

2.2 AES-GCM in TLS
TLS may use AES-GCM to encrypt and authenticate data
in the record layer. In TLS the maximum record size is
on the order of 214. Encryption keys and further key ma-
terial are derived during the TLS handshake phase [4].
The TLS handshake procedure is not relevant to our at-
tack. It is only important to know that the output of a TLS
handshake is a master_secret, which is used to derive
further key material, including the server_write_IV
and client_write_IV.

An input into AES-GCM encryption is a plaintext and
a 12-byte long initialization vector IV . According to
TLS, IV is constructed as follows:

• Salt (4 bytes) is derived during the TLS hand-
shake and its value is equal to server_write_IV /
client_write_IV. This is also called the implicit
part of the IV.

• Nonce (8 bytes): A TLS peer must generate an eight
byte nonce, also called the explicit part of the IV. It
is up to the implementation to make sure the nonce
is unique.

The initialization vector is then used to create a 16-byte
long counter value. The counter value is incremented
by 1 with each new ciphertext block, as described in the
previous section.

3 The Forbidden Attack

In his comments to NIST Joux [19] described an attack
against GCM if nonces are reused. This attack allows an
attacker to learn the authentication key and forge mes-
sages. Because the uniqueness of nonces is typically a
ground rule for cryptanalysis, Joux called his attack the
“forbidden attack”. Nevertheless, it highlights an impor-
tant failure mode in real-world implementations.
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3.1 Overview

Joux’s attack takes advantage of the underlying math-
ematical structure of the GHASH primitive. Specifically,
the computation of the tag T can be viewed as the evalu-
ation of the following polynomial g at the authentication
key H:

g(X) = A1Xm+n+1 + · · ·+AmXn+2

+C1Xn+1 + · · ·+CnX2 +LX +Enck(J0)

Where L is a block encoding the lengths of A and C,
and Enck(J0) is a secret nonce-derived value. Note that
all values other than Enck(J0) are known to the attacker.
Evaluating at H, we have:

g(H) = T

To understand Joux’s attack, consider the case where two
messages are encrypted under the same nonce. For sim-
plicity, let us suppose two messages each with a single
block of ciphertext and no blocks of additional authenti-
cated data. We have:

g1(X) =C1,1X2 +L1X +Enck(J0)

g2(X) =C2,1X2 +L2X +Enck(J0)

Recall that addition in the field is equivalent to XOR.
Knowing that g1(H) = T1 and g2(H) = T2, we modify
each polynomial by adding the known tag. We now have

g′1(X) =C1,1X2 +L1X +Enck(J0)+T1

g′2(X) =C2,1X2 +L2X +Enck(J0)+T2

with g′1(H) = g′2(H) = 0. Note that since Enck(J0) is a
nonce-derived value, it is common to both polynomials.
Adding these polynomials, we obtain

g′1+2(X) = (C1,1 +C2,1)X2 +(L1 +L2)X +T1 +T2

which is fully known to the attacker and satisfies
g′1+2(H) = 0. Since H is a root of g′1+2, we can factor
the polynomial to recover a short list of candidates for
the authentication key. Although the list of candidates
may be as long as the degree of the polynomial, in prac-
tice it is usually relatively short. If further nonce reuse is
detected, additional polynomials sharing a common root
in the authentication key can be constructed. Factoring
these polynomials and finding the common root yields
the correct value for H.

This results in catastrophic failure of authenticity, even
if a nonce is only re-used a single time and enables us
to carry out a practical forgery attack against HTTPS as
described in Section 6.

Table 1: Nonce collision probability p after 2n nonces of
64 bit length.

n p n p

22 0.000000 29 0.007782
23 0.000002 30 0.030767
24 0.000008 31 0.117503
25 0.000031 32 0.393469
26 0.000122 33 0.864665
27 0.000488 34 0.999665
28 0.001951 35 1.000000

3.2 Nonce Generation in TLS
In TLS, GCM requires a 96-bit nonce where 32 bits are
derived along with session key material and remain static
for the duration of the session and the other 64 bits are
transmitted explicitly in each record. As highlighted in
Section 3.1, nonce uniqueness is essential for GCM’s se-
curity. However, the TLS specification does not provide
clear guidelines to developers how to choose the 64-bit
explicit nonce [24].

The easiest secure way is a counter. Given that the
nonce value is 64-bit long, a repeating nonce will only
happen after 264 TLS records. It is not realistic that many
encryptions happen over a single TLS connection. There
are two counter variants in widespread use: Some im-
plementations start the counter with zero and increment
from there, others start with a random value and incre-
ment from it (e.g., OpenSSL). Both variants are equally
secure. Another option would be a negative counter, but
we have not observed this in practice.

3.3 Duplicate Nonces
Faulty implementations may send duplicate nonces, e.g.
by always sending the same value as a nonce or repeating
a nonce for two encryption operations. A single repeated
nonce is usually enough to fully recover the connection’s
authentication key. In such faulty implementations, au-
thenticity is lost and an attacker is able to manipulate
TLS-protected content.

3.4 Random Nonces
A less clear risk is present if an implementor chooses
to use random values as a nonce. If only a few TLS
records are encrypted with the same key, then a random
nonce does not pose a risk. However, if a large number
of records is encrypted with the same key, the risk may
become relevant. If choosing nonces at random after 228

encryptions the probability of a nonce collision will be
around 0,2 % due to the birthday paradox. After 233 en-

4



cryptions the probability will be more than 80 % (see
Table 1).

The size of a TLS record is determined by many
factors, therefore it is not trivial to calculate the exact
amount of data necessary to generate a nonce duplica-
tion with an implementation with random nonces. It is
however most likely in the area of Terabytes. There are
probably few scenarios in which this is a problem. VPN
networks may use the same connection for such a large
number of TLS records. Also in an attack scenario where
an attacker can control Javascript and the victim has a
very fast Internet connection such an attack might be
possible. However this requires an HTTPS server that al-
lows an unlimited number of requests over a single con-
nection. Common HTTP server implementations usually
limit the number of Keep Alive requests that can be sent
over one connection, but this limit can be disabled.

We conclude that an attack on an implementation us-
ing random nonces is unlikely, but it cannot be definitely
excluded. For safety reasons random nonces should be
avoided and a counter should be used.

4 Internet-wide Survey (HTTPS)

Our evaluation of Internet connected devices has been
split into multiple sub-tasks: an initial discovery scan,
followed by vulnerability scans on discovered target de-
vices with different parameters. The scans stretched a
time span of approximately 18 days. In this section we
describe the methods used for discovery and analysis of
Internet connected devices during our evaluation.

All tooling is available for review and testing via
this project’s GitHub repository. Concrete information
on used compilers, libraries, applications, and operating
system is provided in Appendix A.

4.1 Host Discovery
We performed an IPv4 discovery scan using masscan1

for TCP port 443 (HTTPS) starting on new-years eve
2016. With appropriate rate-limiting this scan took about
two days and resulted in 48,406,453 distinct IP ad-
dresses serving on TCP port 443. We limit masscan-
runs to 75,000 pps (packets per second) to reduce strain
on upstream carrier equipment and monitoring as agreed
upon with our upstream ISP.

We honor blacklisting requests while conducting scans
and thereafter, thus keep excluding CIDR blocks during
renewed Internet-wide scans. As of May 4th 2016 our
“blacklist” consists of a total of 558,608 IPv4 addresses.2

1masscan is an open-source project under AGPLv3 license avail-
able from https://github.com/robertdavidgraham/masscan.

2Our “blacklist” is not publicly available nor shared due to obvious
privacy implications. We therefore refrain from detailing on size and

4.2 Vulnerability Testing
Between the 4th and the 17th of January 2016 we per-
formed two vulnerability scans on the randomized set of
all previously collected IPv4 addresses serving HTTPS.
A patch to OpenSSL 1.0.2e and externally parallelized
C-program were used to collect first 10 and then 100
nonces from the TLS handshake of these targets.

We have limited control over the number of connec-
tions a server uses. Our test tool was not ideal in this
regard. Due to the HTTP Keep-Alive feature it is pos-
sible to send multiple HTTP requests over one connec-
tion. After reading content from the server we sent a sec-
ond HTTP request without knowing whether the server
would send more data. An ideal test tool would first read
any content coming from the server, however to reliably
do so one would have to fully implement HTTP, which
is not trivial. Our initial scan tool required a patched
OpenSSL version. We later created a tool that uses an
OpenSSL callback, thus avoiding to patch OpenSSL it-
self, however in our experience this later tool turned out
to be more error prone.

5 Vulnerable Devices

We found 184 devices that used a duplicate nonce.
The behavior of these devices was mixed. 66 de-
vices were using the value 0100000003001741 twice
and then continued with a randomly chosen value and
a counter starting from that value. Four further de-
vices showed a similar behavior, but with other starting
values (010000000100c289, 0100055f03010240 and
010000000080c0eb twice). 84 devices used a random
value for the first encryption and subsequently zero val-
ues. 23 devices simply always used zero. All of these
devices can be practically attacked.

Given these different behaviors we assume we have at
least four different kinds of faulty implementations.

We tried to contact the owners of affected devices, but
ran into significant difficulties. Most of our contact at-
tempts were not answered at all. The affected parties
include several web pages of the credit card company
VISA, the polish banking association ZBP (Związek
Banków Polskich), and Deutsche Börse (German stock
exchange).

With the help of CERT.at we were able to estab-
lish a contact with one affected device owner. We
were able to determine that some devices were load bal-
ancers produced by Radware. We contacted Radware
and explained the issue to them. The affected devices
were using code or hardware from Cavium. Radware
has since fixed the issue and published a security advi-
sory [30]. The Radware device was using the “nonce”

count of excluded net-ranges.
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0100000003001741 twice and then a counter starting
from value chosen at random.

5.1 Missing Return Value Check in
OpenSSL

Several further devices we observed were sending two
values 0100000003001741 and similar other values.
These look like uninitialized memory. We do not have a
definitive answer why these devices behave like this, but
we have some further observations. One device owner
mentioned that the device is using a modified version
of OpenSSL 1.0.1j. Given that we learned from Rad-
ware that their devices internally use a Cavium chip, we
believe they use a modified OpenSSL version in com-
bination with a hardware accelerator chip from Cavium.
Thus, we checked whether we could find a plausible way
how OpenSSL could generate this behavior.

The code that generates the first nonce value in
OpenSSL calls the random number generation function
RAND_bytes() to get eight random bytes. This is done
in the function aes_gcm_ctrl() in e_aes.c. The error
code of RAND_bytes is checked and aes_gcm_ctrl()
returns 0 in case of an error. In t1_enc.c a call
to EVP_CIPHER_CTX_ctrl() happens, which maps to
aes_gcm_ctrl(). The return value is not checked here.

This means that in case the random number genera-
tor returns an error the code continues with uninitialized
memory in the IV. It is possible that the devices showing
this behavior use a hardware random number generator
that is malfunctioning.

We simulated a failing random number generator by
returning an error code if eight bytes were requested
from this function. This deliberately broken OpenSSL
variant sent the value 010000a60000012c as a nonce,
which is uninitialized memory. However unlike with the
devices we observed in the wild we were unable to con-
nect to that broken OpenSSL version. Current OpenSSL
versions properly check the return value of the function
RAND_bytes(), which was added by OpenSSL devel-
oper Matt Caswell in February 2015.3

5.2 LFSR

We found a significant number of devices that, according
to their Server HTTP header, were produced by Check
Point. At first their nonce value looked random. How-
ever after contacting Check Point we learned that their
TLS implementation is using a Linear Feedback Shift
Register (LFSR) for the nonce generation. The LFSR

3https://github.com/openssl/openssl/commit/
eadf70d2c885e3e4e943091eabfec1e73d4f3883

is generated by the following polynomial:

X64 +X63 +X61 +X60 +1 .

The chosen LFSR has maximal period of 264− 1, i.e. if
the LFSR is initialized with an arbitrary non-zero nonce
then only after 264 − 1 updates the values start to re-
peat. This implementation therefore has the same secu-
rity properties as a counter. We considered this in our
analysis and excluded nonces using this LFSR. While
this approach is unusual, there is no security risk asso-
ciated with it. It can however be used to fingerprint de-
vices.

There may be other implementations that have a
randomly-looking nonce, but are in fact generated us-
ing an LFSR-like algorithm. However we are not aware
of such devices at this time and welcome feedback from
device manufacturers and software developers.

5.3 Random Nonces

After filtering the results for the LFSR used by Check
Point there were approximately 70,000 devices left that
had a random-looking nonce. Based on the title tags and
HTTP headers we tried to identify the devices.

Based on the HTTP "Server" header around 7,700 de-
vices were Lotus Domino installations. We disclosed the
issue to IBM, the vendor of Lotus Domino. They con-
firmed the vulnerability and published an update [16].

Based on the title tag 19,120 hosts were devices by the
company Sangfor, a chinese vendor of network equip-
ment. We disclosed the issue to Sangfor, but never re-
ceived any reply to our contact attempts.

Due to a contact of one affected server operator we
were able to identify it as an A10 load balancer (model
AX1030, OS version 2.7.2-P5). We disclosed the issue
to A10 and they confirmed and fixed it [35].

A significant number of affected hosts identified them-
selves as Microsoft IIS in different versions in the
"Server" header. The most common identification string
was "Microsoft-IIS/7.5", which we found 9,633 times.
We are unable to explain this. In our tests Windows/IIS
installations did not show any suspicious behavior. We
contacted Microsoft and they informed us that all ver-
sions of SChannel use a counter as a nonce. The most
likely reason for this finding is that these hosts all had
their TLS termination offloaded to a load balancer or fire-
wall.

Based on our findings we must assume that there are
potentially vulnerable implementations we were unable
to identify.
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6 A Practical Attack on Browser HTTPS

We implemented an attack to inject malicious content
into browser-based HTTPS sessions. Our attack takes
advantage of servers that repeat GCM nonces either by
random chance or due to implementation errors.

Let C, S, and M denote the browser client, a vulnerable
web server, and our man-in-the-middle (MitM) attacker,
respectively. For the purposes of our attack, assume M
controls the local network: they may observe all of C’s
traffic and modify or drop messages. We assume also that
S exposes a faulty TLS implementation that will repeat
nonces reliably.

The attack proceeds as follows:

1. M coerces C into loading attacker-controlled con-
tent. This can be done either via a phishing attack or
by injecting malicious content into unauthenticated
HTTP traffic.

2. M serves C HTML or JavaScript to initiate an
HTTPS session with S. M observes the handshake
to verify that a GCM cipher suite is negotiated. If
not, M aborts the attack.

3. After S changes cipher suites following a success-
ful handshake, M begins recording all server-sent
traffic. In particular, M notes the following in each
record:

• The sequence number, a simple incrementing
counter.

• The record header comprising the first five
bytes of the record.

• The explicit nonce part comprising the first
eight bytes of the record fragment.

• The authentication tag comprising the last 16
bytes of the record fragment.

• The ciphertext comprising the remaining bytes
of the record fragment.

4. M serves C content to poll S at a short interval and
continues to record the responses in a lookup table
indexed by explicit nonce part.

5. When S repeats a nonce, M builds a polynomial de-
rived from the relevant pair of records. In GCM un-
der TLS, the AAD for a record includes both the
record header and the sequence number. The ci-
phertext and tag are as described above.

6. M factors this polynomial to find a short list of can-
didates for the authentication key. M takes the set
intersection of this list and the previous list of can-
didates. (In the event that this is the first collision,
this list is the set of all possible keys.)

7. If more than one candidate for the authentication
key remains, M returns to step 4. Otherwise, M
serves content redirecting C to a static endpoint of
the vulnerable application S.

8. M intercepts the response from S. Since the tar-
get is a static endpoint, it is trivial for M to inject
malicious content into the response by XORing the
known payload against the tail of the ciphertext and
then XORing the malicious content against the same.

Additional considerations:

• If S does not repeat nonces more than once in a
given session, M may attempt to hijack the connec-
tion even if there are multiple candidates for the au-
thentication key. M can simply guess at one of the
candidates and attempt to tamper with a server re-
sponse before redirecting. If the guess is incorrect,
C and S will simply renegotiate a new session and
M can try again.

• If the application served by S does not contain any
static HTML endpoints, M may choose instead to
target static resources such as CSS or JavaScript.
This will additionally require M to tamper with the
HTTP response headers to change the content type
to text/html.

A proof-of-concept exploit for this attack is provided
on GitHub.4

7 Further Observations

In this section we discuss further observations made by
analysis of cryptographic protocols and libraries.

7.1 Encryption Oracle with Zero-Length
Inputs

The AES-GCM specification allows one to encrypt ar-
bitrary data of a length up to 239− 256 bits [25]. It is
also possible to encrypt zero-length messages with zero-
length additional authentication data. In that case, the
output of the last Gmul function becomes zero: S = 0
(see Fig. 1). This implicates that the authentication
tag is equal to the encryption of the first counter block
T = Enck(J0).

This property of AES-GCM has no direct security con-
sequences. If a victim encrypts zero-length data with
AES-GCM, the attacker learns neither the secret key k
nor the hash key H. However, if the attacker can force
the victim to encrypt zero-length data, he is able to ob-
tain valuable plaintext/ciphertext block pairs. Thus, he

4https://github.com/nonce-disrespect/nonce-disrespect/
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can use the victim as an encryption oracle to encrypt ran-
dom messages. If the ciphertext receiver supports dif-
ferent modes of operations – e.g., CBC (Cipher Block
Chaining) – the attacker is then able to construct valid
messages encrypted with victim’s secret key k.

We stress that this is not a valid TLS scenario. First, in
TLS the additional authentication data is non-zero [4]. It
consists of a sequence number, message type, TLS ver-
sion and message length. Second, it is not possible to use
the same symmetric key for different algorithms in TLS.
However, this property of AES-GCM could become ex-
ploitable in specific scenarios where the same symmetric
keys can be used for different modes of operations [17].
Potential examples include XML Encryption [7], JSON
Web Encryption [18], or PKCS#11 [11].

7.2 Analysis of Cryptographic Libraries
We analyzed usage of AES-GCM nonces in crypto-
graphic libraries: Botan 1.11.28, BouncyCastle Java
1.54, MatrixSSL 3-7-2b, SunJCE 1.8, and OpenSSL
1.0.2g. None of the TLS servers provided by these li-
braries was vulnerable to nonce-reuse attacks. The first
four libraries set the nonce value to zero and increment
the nonce value with each new record. OpenSSL behaves
differently and sets the first nonce value to a random 8-
byte string. Further nonce values are constructed by in-
crementing this random string.

We furthermore investigated the usage of the counter
value (cnt) in these libraries. According to the stan-
dard, if the number of blocks in one ciphertext is larger
than 232, a modulo reduction should applied: cnt = i
mod 232 [25]. This is misleading because the standard
prescribes usage of at most 232 blocks, and it is known
that repeating counter values is insecure in AES counter
mode of operation. Interestingly, the Botan library did
not perform the modulo reduction and in a case the num-
ber of blocks in one ciphertext was larger than 232, the
counter overflowed and the last byte of the nonce value
was increased as well. To the best of our knowledge, this
does not influence the security of Botan. Botan develop-
ers fixed this issue in version 1.11.30 [3]. We observed a
similar behavior in the MatrixSSL library.

8 Conclusions and Recommendations

Our results show that there is a significant risk of GCM
getting implemented in an insecure way. This risk gets
elevated by the fact that the TLS specification gives de-
velopers little guidance on how to implement GCM se-
curely. More resilient approaches are possible though
and we outline two solutions briefly below.

The TLS drafts for Chacha20-Poly1305 [22] (which
has been submitted to IESG for publication recently)

and AES-OCB [36] both specify methods to generate
nonces from record sequence numbers and shared se-
crets in a deterministic way. This construction prevents
that implementations choose their own (potentially inse-
cure) nonce generation methods, saves some bandwidth
since an explicit transmission of the nonce is not nec-
essary anymore, and assures that erroneous implementa-
tions are non-interoperable. In particular, this avoids the
risk of developers choosing random or, even worse, con-
stant nonces. TLS 1.3 [31] enforces a similar approach
for all of its AEAD cipher suites.

The other alternative is to rely on cryptographic al-
gorithms that inherently resist nonce-misuse, i.e. such
ciphers uphold their security guarantees, even if a nonce-
key pair is reused for different messages. The price for
this property however is that these ciphers are inher-
ently “offline”, meaning that two passes over the data
are necessary in order to perform authenticated encryp-
tion. These algorithms usually operate in a MAC-Then-
Encrypt-like manner where first message and associated
data are processed to produce the authentication tag and
then the latter is used as the nonce for the encryption al-
gorithm. Such nonces are also often known as synthetic
IVs (SIV), a term first coined by Rogaway and Shrimp-
ton [32] in 2006. Examples of nonce misuse-resistant
algorithms include AES-SIV [14], AES-GCM-SIV [13],
AEZ [15], HS1-SIV [20], and MRO from the MEM-
AEAD [10] cipher family.

In general future protocols should rely on algorithms
and constructions that reduce the risk of implementation
errors as much as possible. Both of the options presented
above are viable approaches to protect against nonce-
misuse. In this specific case ambigious wording and
human-error seemed to be the reason for a rather serious
attack against TLS and in particular HTTPS. One of the
authors has prepared an errata5 to [33] which is currently
being discussed within the TLS working group.6 It is our
hope that future protocol design decisions take human
error, common implementation and software bugs into
account and ensure that appropriate, distinct and clear
discussion will be added to the security considerations
section of documents published within the IETF Secu-
rity Area.
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A Applications, Operating Systems, Com-
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$ uname -a
Linux scan.sba-research.org 3.13.0-83-generic
#127-Ubuntu SMP Fri Mar 11 00:25:37 UTC 2016 x86_64
x86_64 x86_64 GNU/Linux

C
C C
C

$ lsb_release -a
No LSB modules are available.
Distributor ID:Ubuntu
Description:Ubuntu 14.04.4 LTS
Release:14.04
Codename:trusty

$ /lib/x86_64-linux-gnu/libc.so.6
GNU C Library (Ubuntu EGLIBC 2.19-0ubuntu6.7) stable
release version 2.19, by Roland McGrath et al.

C
C

Copyright (C) 2014 Free Software Foundation, Inc.
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This is free software; see the source for copying
conditions.

C
C

There is NO warranty; not even for MERCHANTABILITY or
FITNESS FOR A

C
C

PARTICULAR PURPOSE.
Compiled by GNU CC version 4.8.2.
Compiled on a Linux 3.13.11 system on 2016-02-16.
Available extensions:
crypt Availabledd-on version 2.1 by Michael Glad and
others

C
C

GNU Libidn by Simon Josefsson
Native POSIX Threads Library by Ulrich Drepper et al
BIND-8.2.3-alT5B
libc ABIs: UNIQUE IFUNC
For bug reporting instructions, please see:
<https://bugs.launchpad.net/ubuntu/+source/eglibc/+bugs>.

$ gcc --version
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.1) 4.8.4
Copyright (C) 2013 Free Software Foundation, Inc.
This is free software; see the source for copying
conditions. There is NO

C
C

warranty; not even for MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

C
C

$ ./masscan --version

Masscan version 1.0.3 (
https://github.com/robertdavidgraham/masscan )

C
C

Compiled on: May 20 2015 15:17:28
Compiler: gcc 4.8.2
OS: Linux
CPU: unknown (64 bits)
GIT version: 1.0.3-95-gb395f18

openssl-1.0.2e-patched$ ./apps/openssl version -a
WARNING: can’t open config file:
/usr/local/ssl/openssl.cnf

C
C

OpenSSL 1.0.2e 3 Dec 2015
built on: reproducible build, date unspecified
platform: linux-x86_64
options: bn(64,64) rc4(16x,int) des(idx,cisc,16,int)
idea(int) blowfish(idx)

C
C

compiler: gcc -I. -I.. -I../include
-DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN
-DHAVE_DLFCN_H -Wa,--noexecstack -m64 -DL_ENDIAN -O3
-Wall -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT
-DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m
-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM
-DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM
-DGHASH_ASM -DECP_NISTZ256_ASM

C
C C
C C
C C
C C
C C
C C
C

OPENSSLDIR: "/usr/local/ssl"
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