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Abstract
Emerging mobile social apps use short-range radios to dis-

cover nearby devices and users. The device discovery proto-
col used by these apps must be highly energy-efficient since it
runs frequently in the background. Also, a good protocol must
enable secure communication (both during and after a period
of device co-location), preserve user privacy (users must not
be tracked by unauthorized third parties), while providing se-
lective linkability (users can recognize friends when strangers
cannot) and efficient silent revocation (users can permanently
or temporarily cloak themselves from certain friends, unilater-
ally and without re-keying their entire friend set).

We introduce SDDR (Secure Device Discovery and Recog-
nition), a protocol that provides secure encounters and satisfies
all of the privacy requirements while remaining highly energy-
efficient. We formally prove the correctness of SDDR, present
a prototype implementation over Bluetooth, and show how ex-
isting frameworks, such as Haggle, can directly use SDDR. Our
results show that the SDDR implementation, run continuously
over a day, uses only ∼10% of the battery capacity of a typical
smartphone. This level of energy consumption is four orders
of magnitude more efficient than prior cryptographic protocols
with proven security, and one order of magnitude more effi-
cient than prior (unproven) protocols designed specifically for
energy-constrained devices.

1 Introduction

Mobile social applications discover nearby users and
provide services based on user activity (what the user is
doing) and context (who and what is nearby). Services
provided include notifications when friends are nearby
(Foursquare [6], Google Latitude [7]), deals from nearby
stores (Foursquare), content sharing with nearby users
(FireChat [5], Whisper [15], Haggle [50]), messaging for
missed connections (SMILE [43], SmokeScreen [27]),
lost and found (Tile [13], StickNFind [12]), sharing pay-
ments with nearby users (Venmo [14]). At their low-
est layer, these applications all discover nearby devices;

many also associate previously linked users to discovered
devices and provide communication among presently or
previously co-located devices.

Most commercially deployed solutions rely on a
trusted cloud service [6, 7], which tracks users’ activ-
ity and location, so that it can match co-located users
and relay information among them. Discovery using a
centralized matchmaking service forces users to disclose
their whereabouts, perils of which have been extensively
noted [16, 19, 24, 48, 52]. Instead of relying on cen-
tralized services, an alternate class of discovery proto-
cols make use of local, short-range radio-to-radio com-
munication [1, 9, 27, 50]. The common practice of us-
ing static identifier(s) in the discovery process [2] leaks
information, since it allows an eavesdropper to track
a user’s locations and movements. To protect against
such tracking, previous work [35–37] has suggested that
ephemeral identifiers should be used in place of static
ones. Simply replacing static identifiers with strictly ran-
dom ephemeral identifiers is insufficient: while eliminat-
ing tracking, it also prevents friends (or users with prior
trust relations) from recognizing each other when nearby.

In this paper, we describe a light-weight, energy-
efficient cryptographic protocol for secure encounters
called SDDR. At a high level, secure encounters provide
the following properties: 1) discovering nearby devices,
2) mapping devices to known principals (if possible), and
3) enabling secure communication for encounter peers.

Device discovery and secure encounter SDDR per-
forms a pair-wise exchange of a secret with each nearby
device. The shared secret enables encounter peers to
communicate securely during and after the encounter,
anonymously and without trusting a third party (e.g.,
sharing related content with event participants).

Selective linkability and revocation Additionally,
SDDR enables a user’s device to be identifiable by spe-
cific other users, while revealing no linkable information
to other devices. For instance, friends can agree to recog-
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nize each others’ devices, while third parties are unable
to link and track devices upon repeat encounters. More-
over, users can efficiently and unilaterally revoke or sus-
pend this linkability, for instance based on the current
time or location (e.g., discoverable by colleagues only
during work hours and on company premises).

Challenges: Energy efficiency and DoS resilience In
theory, designing a protocol that satisfies the above func-
tional and security requirements is straightforward. For
example, an inefficient strawman scheme can be con-
structed using existing cryptographic primitives. Pairs
of devices can perform a Diffie-Hellman key exchange
to establish a shared secret, enabling the users to se-
curely communicate. To support selective linkability,
two users can participate in a standard Private Set Inter-
section (PSI) protocol. A user can allow (or disallow) a
peer to recognize them in a future encounter by includ-
ing (or excluding) a past shared encounter secret from
the set.

However, as we will show in Section 6, using a full-
fledged PSI protocol is impractical. Because the shared
encounter secrets (i.e., elements in the set) are high-
entropy values, it is possible to implement a secure PSI
protocol through an efficient Bloom filter based con-
struction. Unfortunately, even when using an efficient
Bloom filter based PSI scheme, the above strawman
scheme—implemented naively—has high energy con-
sumption. Specifically, a naive implementation requires
a device to wake up its CPU each time it receives a mes-
sage from a nearby device, an expensive operation for
energy-constrained mobile devices. The protocol would
deplete the battery in crowded spaces (e.g., a subway
train) where hundreds of devices may be within radio
range. Furthermore, an attacker mounting a DoS attack
could deplete the victim device’s battery by frequently
injecting messages to cause unnecessary wake ups.

1.1 Contributions
We designed, implemented, and formally proved the
security of SDDR, a light-weight secure encounter
protocol suitable for resource-constrained mobile de-
vices. Our reference implementation source code (us-
ing Bluetooth 2.1 as the short-range radio) is available at
http://www.cs.umd.edu/projects/ebn.
Achieving energy efficiency The main feature of SDDR
is its non-interactiveness, i.e., the encounter protocol
consists of periodic broadcasts of beacon messages,
which enable both the key exchange and selective recog-
nition. Because the SDDR protocol is non-interactive,
the Bluetooth controller can be initialized so that it re-
sponds to discovery requests from peers with a beacon
message, while the main CPU remains completely in the
idle state. A device only needs to wake up its CPU when
actively discovering nearby peers.

Our evaluation shows that such a non-interactive pro-
tocol allows us to improve the energy efficiency by at
least 4 times in comparison with any interactive proto-
col (even if the interactive protocol performs no work),
under a typical setting with 5 new devices nearby on av-
erage during every 60 second discovery interval. Under
the same parameters, we show that an otherwise idle de-
vice running SDDR over Bluetooth 2.1 will operate for
9.3 days on a single charge.

First formal treatment of the problem We are the first
(to the best of our knowledge) to provide a formal treat-
ment of secure device discovery and recognition. We
define a security model that captures the requirements
of secure encounters and selective linkability, and prove
that our solution is secure under the random oracle model
(see Appendix A.3).

Applications over SDDR To demonstrate some of
SDDR’s capabilities, we have modified the Haggle mo-
bile networking platform to use SDDR, enabling efficient
and secure discovery and communication via Bluetooth
for all Haggle apps. For demonstration, we have modi-
fied the PhotoShare app to enable private photo sharing
among friends using SDDR selective linking.

Roadmap The remainder of the paper is organized as
follows. We discuss related work in Section 2. Next, we
review security requirements, formulate the problem and
provide security definitions in Section 3. We present de-
tails of the SDDR discovery protocol in Section 4, fol-
lowed by our reference Bluetooth implementation and
evaluation results in Sections 5 and 6, respectively. We
discuss the properties and implications of SDDR’s en-
counter model in Section 7. We conclude in Section 8.

2 Related Work

Device discovery protocols Several device discovery
protocols have been proposed; however, none simulta-
neously offer the full functionality and security offered
by our SDDR protocol. Since SDDR provides secure de-
vice discovery and recognition for a large range of mo-
bile encounter applications, it allows developers to focus
on their application logic.

Unli
nk

ab
ilit

y

Sele
cti

ve

Link
ab

ilit
y

Effi
cie

nt

Rev
oc

ab
ilit

y

No Trus
ted

Part
y Rec

ord

Enc
ou

nte
rs

Bluetooth 4.0 � � �

SMILE � � �

SmokeScreen � � �

SDDR � � � � �

Table 1: Comparison of related device discovery and
recognition protocols in terms of supported properties.



USENIX Association  23rd USENIX Security Symposium 927

Bluetooth 4.0 (BT4) is the most recent version of
the Bluetooth standard, introducing a new low-energy
mode [3], as well as support for random MAC addresses
to be used in communication. Building on top of the
MAC address change support, BT4 adds a form of selec-
tive linkability in which paired (trusted) devices can rec-
ognize each other across MAC address changes, while
remaining unlinkable to all other devices. Since BT4
uses a single shared key for all currently linkable users,
it does not allow for efficient revocation of a subset of
users. Further, BT4 does not natively support encounters
with unlinkable devices.

SMILE [43] is a mobile “missed connections” appli-
cation, which enables users to contact people they pre-
viously met, but for who they don’t have contact infor-
mation. The SMILE protocol creates an identifier and
shared key with any set of devices that are within Blue-
tooth range at a given time. Users can subsequently ex-
change messages (encrypted with the shared key) anony-
mously through a cloud-based, untrusted mailbox associ-
ated with the identifier. Unlike SDDR, SMILE does not
address selective linkability and revocation.

MeetUp [44] is an encounter-based social networking
application that argues for (and uses) strong authentica-
tion within an encounter. This authentication comes in
the form of exchanging signed certificates (from a trusted
authority) attesting to a public key and picture of a user.
However, we feel that in many applications, users should
be unlinkable by default, and should not be required to
distribute any identifiable information (e.g., public key,
user picture) in an encounter. We discuss authentication
in Section 4.4.

SmokeScreen [27], a system that allows friends to
share presence while ensuring privacy, also implements
a selectively linkable discovery protocol for encounter
peers. In SmokeScreen’s discovery protocol, devices pe-
riodically broadcast two types of messages: clique sig-
nals and opaque identifiers. Clique signals enable private
presence sharing among friends, announcing the device’s
presence to all members of a mutually trusting clique. In
comparison with SDDR, SmokeScreen requires a trusted
third-party service and achieves slightly weaker security:
an adversary can infer that two users belong to the same
clique, since all users broadcast the same clique signal
during each time epoch. Furthermore, SDDR can han-
dle 35 nearby devices for the same energy as 3 devices
in SmokeScreen. Additionally, SDDR supports efficient
revocation of linked users, which is not possible with
cliques in SmokeScreen.

SlyFi [35] is a link layer protocol for 802.11 networks
that obfuscates MAC addresses and other information to
prevent tracking by third parties. Unlike SDDR, SlyFi
does not address selective linkability or revocation, nor
does it negotiate shared keys among co-located devices.

SDDR includes a Bluetooth MAC address change proto-
col similar to SlyFi’s to prevent tracking.
Related protocols using Bloom filters Bloom fil-
ters [20] are a space-efficient probabilistic data structure
for set membership. Bloom filters have been used in
many cryptographic protocols [23], including (private)
set-intersection and secure indexes. However, none of
the protocols address the precise problem and security
requirements of SDDR.

Secure indexes are data structures that allow queriers
to perform membership tests for a given word in O(1)
time if they have knowledge of the associated secret.
Secure indexes were first defined and formalized by
Goh [33], who provided a practical implementation
using Bloom filters. Similar work has focused on
privacy-preserving searches over encrypted data [26] and
databases [54] using Bloom filters. If applied to de-
vice recognition, all protocols would allow adversaries
to track users due to the static Bloom filter content.

PrudentExposure [56] allows users to privately dis-
cover appropriate services, where the user and service
belong to the same domain. To maintain user privacy,
PrudentExposure relies on Bloom filters containing time-
varying hashes of domain identities for intersecting the
requested and available domains.

E-SmallTalker [55] and D-Card [25], which builds
on E-SmallTalker, support social networking with
nearby strangers (E-SmallTalker) and friends (D-Card).
BCE [31] enables users to estimate the set of common
friends with other users. These protocols would be in-
secure when applied to the device recognition problem,
as none of the protocols use time-varying information in
the Bloom filters, allowing users to be linked across mul-
tiple handshakes. Additionally, E-SmallTalker does not
apply the Bloom Filter to high-entropy secrets, and thus
is vulnerable to an offline dictionary attack.

Sun et al. [51] present a new way of building trust re-
lationships between users by comparing spatiotemporal
profiles (log of time and location pairs). In addition to
a PSI-based scheme, they present another scheme using
Bloom filters that trades off estimation accuracy and pri-
vacy in a user-defined manner. In SDDR, we avoid the
privacy vs. accuracy trade off since the linkable users
share a high-entropy secret as opposed to low-entropy
time, location pairs.

Dong et al. [30] use garbled Bloom filters to create a
practical PSI protocol that handles billions of set mem-
bers. While more efficient than existing PSI protocols,
it does not scale down when applied to small set sizes
on resource-constrained devices. Because of its reliance
on secret shares instead of bits in the Bloom filter, the
smallest possible Bloom filter to handle a maximum of
256 items would be 17736 bytes — two orders of mag-
nitude larger than what SDDR requires. In addition, the
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communication cost of this interactive protocol increases
linearly with the number of nearby devices.

Nagy et al. [45] use Bloom filters to provide a PSI pro-
tocol that allows users of online social networks (OSNs)
to determine common friends while preserving user pri-
vacy. While their solution provides ample efficiency
gains over standard PSI, saving an order of magnitude in
communication and computation costs, several seconds
per interactive exchange is too much when running on
power-constrained devices in dense environments.

Authenticated key exchange Secure device discovery
and recognition should not be confused with mutual au-
thentication, or authenticated key exchange (AKE) pro-
tocols [21, 40]. SDDR aims to achieve device discovery
and recognition; guaranteeing mutual authentication is
not a goal of the basic SDDR protocol. As noted in Sec-
tion 4.4, once Alice’s device recognizes Bob’s device,
Alice can authenticate Bob by soliciting an explicit veri-
fication message from Bob; however, authentication will
only be performed if desired by the higher-level applica-
tion (or user). While secure device discovery and recog-
nition can be achieved by executing an AKE protocol
with each nearby device (for all possible shared secrets),
such a scheme would be prohibitive in an environment
with many nearby peers.

3 Problem Overview

In this section, we review the requirements for a secure
encounter protocol, sketch a strawman design, and make
observations that enable a practical protocol.

Devices executing a secure encounter protocol should
detect nearby participating devices, and learn their cur-
rent ephemeral network identifier. Additionally, each
pair of nearby devices should generate a unique (except
with negligible probability) shared secret key, known
only to the pair. This key allows the devices to: 1)
uniquely refer to a particular encounter; and, 2) authenti-
cate each other as the peer in the encounter and securely
communicate. The pair should learn no other informa-
tion about each other; when the same pair of devices
meet again, the shared secret and network identifiers ex-
changed should be unrelated.

By default, devices should remain unlinkable, mean-
ing that no identifying information is exchanged. While
unlinkability is appropriate between strangers’ devices,
friends may wish to enable their devices to recognize
each other. A user who allows her device to be rec-
ognized by a friend during future discoveries is termed
selectively linkable (or simply linkable) by that friend.
When two devices discover each other, a recognition pro-
tocol should determine if the remote device corresponds
to a linkable user. Selectively linkable users must share

a unique secret value such that the devices can authenti-
cate each other during the recognition protocol; we refer
to this shared secret as the link value. Users can derive
the link value from the shared secret established during a
prior encounter, or using an out-of-band protocol.

In general, users may not wish to be recognizable by
their entire set of friends at all times (e.g., Alice may
only want her work colleagues to recognize her device
while at work). Therefore, a user should be able to con-
textually (e.g., in terms of time, place, activity) filter the
set of friends that can recognize them. This filtering re-
quires that revocation of selective linkability be efficient
(e.g., not require a group re-keying) and unilateral (e.g.,
not require communication). Additionally, the filtering
may take place in one direction: Alice may want to not
be recognizable by Bob, yet still want to recognize him.
Therefore, we consider two distinct sets of link value: the
set of advertiseIDs (i.e., who you are willing to be rec-
ognized by), and the set of listenIDs (i.e., who you want
to recognize). Alice’s device is able to recognize Bob’s
device if and only if their shared link value is in Bob’s
advertiseIDs and in Alice’s listenIDs.

3.1 Security Requirements
We summarize the security requirements below:

Secure communication If Alice and Bob share an en-
counter, they are able to securely communicate using an
untrusted communication channel, both during and after
the encounter, and regardless of whether Alice and Bob
have opted to selectively link their devices.

Unlinkability The information exchanged during a se-
cure encounter reveals no identifying information about
the participating devices, unless the devices have been
explicitly linked. In particular, unlinked devices that
encounter each other repeatedly are unable to associate
their encounters with a previous encounter.

Selective linkability Alice and Bob can optionally agree
to be linkable, and therefore able to recognize and au-
thenticate each others’ devices in subsequent discover-
ies.

Revocability Alice may, at any time, unilaterally revoke
Bob’s ability to recognize her.

3.2 Threat Model
We assume that user devices, including the operating sys-
tem and any applications the user chooses to run, do not
divulge information identifying or linking the device or
user. Preventing such leaks is an orthogonal concern
outside SDDR’s threat model. User devices attempt to
participate in the protocol with all nearby discovered de-
vices, a subset of which could be controlled by attackers,
who may all collude.

We do not consider radio fingerprinting attacks, which
detect a device by its unique RF signature [22]. Such
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attacks may require sophisticated radio hardware, and are
outside our threat model.

3.3 Strawman Protocol
A strawman scheme using existing cryptographic tools,
namely Diffie-Hellman [29] (DH) and Private Set Inter-
section [28, 39] (PSI), can meet the requisite security re-
quirements outlined above. Upon detecting a device, the
protocol performs a DH exchange to agree upon a shared
secret key. By generating a new DH public and private
key pair prior to each exchange, devices remain unlink-
able across encounters.

To recognize selectively linkable devices, the proto-
col executes PSI over the devices’ advertised and listen
identifier sets. Selective linkability and revocability prop-
erties are satisfied by all PSI protocols; however, in order
to preserve privacy, we require a PSI protocol that sup-
ports unlinkability across multiple executions.

While the DH+PSI strawman achieves the desired se-
curity properties, it is not practical when frequently run
on resource constrained devices. As shown in Section 6,
the computation and communication requirements of ex-
isting PSI constructions are prohibitively high.

3.4 Observations
In order to enable a practical protocol we rely on several
observations:

First, strict unlinkability requires that two different
discoveries between a pair of devices are unlinkable, re-
gardless of how closely the discoveries are spaced in
time. This property cannot be achieved with a non-
interactive protocol, because it requires a change of
ephemeral network ID and DH keys after each discovery.
In order to use a non-interactive protocol, we must set-
tle for the slightly weaker property of long-term unlink-
ability; devices may be linkable within a time epoch, but
they remain unlinkable across epochs. For an epoch on
the order of minutes, long-term unlinkability is sufficient
in practice. It is important to note that epoch boundaries
and durations do not require time synchronization; de-
vices may choose when to change epochs independently.

Second, detecting selectively linked devices requires
an intersection of the sets of advertised link values be-
tween a pair of devices. Even a simple, insecure inter-
section protocol would require the transmission of the
complete sets during each pair-wise device discovery,
which is too expensive. However, we note that in a
large deployment, discoveries among strangers are far
more common than discoveries among linked devices.
Therefore, an over-approximation of the set intersection
may suffice. False positives can be resolved when two
presumed linkable devices attempt to authenticate each
other using the shared link value.

Finally, we can take advantage of the fact that link val-
ues shared between users are high-entropy values taken

from a large space, by design. General purpose PSI pro-
tocols, on the other hand, ensure security even when sets
contain low-entropy values (e.g., dictionary words).

Using these observations, we present the SDDR proto-
col, which meets the security requirements with practical
performance and energy efficiency.

4 SDDR Design

4.1 High-Level Protocol
Like the strawman protocol, SDDR uses DH to exchange
a shared secret key with each nearby device; however,
SDDR performs the exchange in a non-interactive man-
ner. Periodically, each device broadcasts its DH public
key and receives broadcasts from other nearby devices,
computing all pair-wise shared secret keys.

SDDR divides time into epochs, during which the
ephemeral network address, DH public/private key pair,
and advertiseIDs set digest remain constant. Devices are
unlinkable across epochs, thus preserving long-term un-
linkability. To avoid expensive synchronous communica-
tion, epochs are not synchronized among devices. As a
result, the DH computation may fail to produce a shared
key if it occurs around an epoch change of either device
in a pair. For instance, Alice receives Bob’s broadcast
in her epoch n, but Bob fails to receive Alice’s broadcast
until her epoch n + 1, so he computes a different key.
Because broadcasts occur more frequently than epoch
changes (seconds versus minutes), however, the proba-
bility that a broadcast round yields a shared key quickly
tends to one with every broadcast round.

Since the link identifiers shared between users are
high-entropy values chosen from a large space (e.g., a
shared key produced during a prior discovery), SDDR
can recognize linkable devices by broadcasting salted
hashes of their respective set of advertiseIDs. The DH
public key is used as the salt; since the salt is different
in each epoch, a device cannot be recognized by the bit-
pattern in its Bloom filter across epochs, that ensuring
long-term unlinkability. Each user then searches over the
hashes using their own set of listenIDs, along with the
corresponding salt value, in order to identify the listenID
(if any) associated with the remote device.

However, the communication required for moderately-
size sets (e.g., 256 advertiseIDs) is still too large for an
efficient implementation in Bluetooth due to (pseudo-)
broadcast message length constraints. By allowing the
recognition protocol to over-approximate the actual in-
tersection between the set of local listenIDs and remote
advertiseIDs, SDDR can use a probabilistic set digest
data structure to reduce the communication needed to de-
termine the intersection. The size of the set digests can be
parameterized based on the message size restrictions of
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the radio standard used for communication. The choice
affects performance only; false positives due to the use of
set digests can be resolved using the shared link values,
and therefore have no bearing on the protocol’s security.

The selective linkability property is satisfied by the
use of non-deterministic hashes of the link identifiers
shared by two users, only allowing linkable users to rec-
ognize each other. The revocation is supported by the
user’s ability to add or remove link values from the set of
advertiseIDs.

4.2 Formal Problem Definition
We divide the non-interactive SDDR protocol into two
algorithms (GenBeacon and Recognize), which we for-
malize below:

beacon← GenBeacon(advertiseIDs)

In each epoch, a device wishing to participate in
peer encounters executes the GenBeacon algorithm,
which takes as input the current set of advertiseIDs.
The GenBeacon protocol outputs a message beacon,
which the device then broadcasts to nearby devices.

(sk, listenIDsre,L) ← Recognize(beaconre, listenIDs)
Upon receiving a beaconre from a remote peer, a
device executes the Recognize algorithm, which
additionally takes in the current set of listenIDs.
The Recognize algorithm outputs a secret key sk,
the set of listenIDsre associated with the remote
peer, and the link identifier L for this encounter.

4.3 Detailed Protocol Description
Next, we provide a detailed description of the SDDR pro-
tocol. Pseudo-code for the GenBeacon and Recognize al-
gorithms is shown in Figure 1. In the protocol, as well
as our implementation, we use Bloom filters as the prob-
abilistic set digest data structure; however, other set di-
gests (e.g. Matrix filters [46]) could be used instead.

Each user Pi starts by running GenBeacon in order to
generate the beacon message to broadcast during the cur-
rent epoch. GenBeacon first selects a random DH private
key αi, which corresponds to the DH public key gαi . Af-
terwards, GenBeacon computes the Bloom filter by hash-
ing each advertiseID within ASi (the set of advertiseIDs),
using the DH public key as the salt. The resulting beacon
contains the public key and the Bloom filter.

Each user Pi broadcasts their respective beacon during
the epoch. After receiving a beacon from a remote user
Pj, user Pi runs the Recognize algorithm. Recognize first
computes the DH secret key dhki j, using the local user’s
DH private key and the remote user’s DH public key (as
contained in the beacon). Using the dhki j along with
the local and remote DH public keys, Recognize com-
putes the shared link identifier Li j, which can optionally
be used in case the two users wish to selectively link.

Additionally, Recognize computes the key ski j using
the link identifier Li j, which the two devices can use
to authenticate each other as the peer associated with
this encounter, and then securely communicate. Fi-
nally, Recognize queries the Bloom filter by hashing each
listenID within LSi (the set of listenIDs), using the re-
mote user’s DH public key as the salt, resulting in the set
of matches Mj.

Recall that ski j may not be shared (i.e., ski j �= sk ji)
in some cases when individual devices decide to change
epochs. When a device attempts to communicate using
such a key, the authentication will fail, and the device
retries with a key produced in a subsequent discovery.
Also, to make sure a valid link identifier is used, devices
attempt to authenticate each other as part of the pairing
process to selectively link.

Notation: Let BF{S} denote a Bloom filter encoding the set S. Let
H0, H1, and H2 denote independent hash functions later modeled as
random oracles in the proof.

Inputs: Each user Pi has a set of listenIDs (LSi) and a set of
advertiseIDs (ASi).

Outputs: For all users Pj , discovered by Pi, Pi outputs:

1. ski j: A shared secret key
2. listenIDsre: Set of matching listenID ∈ LSi associated with Pj

3. Li j: A shared link identifier

Protocol: Each Pi performs the following steps:

GenBeacon(ASi)

1. Select random αi ∈R Zp

2. Compute BFi := BF{H1(gαi ||x) : x ∈ ASi}
3. Create beaconi = (gαi ,BFi)

Each user Pi broadcasts beaconi. For each user Pj that user Pi
discovers, Pi runs Recognize.

Recognize(beacon j,LSi)

1. Compute DH key dhki j = (gα j )αi

2. Compute link Li j :=

{
H0(gαi ||gα j ||dhki j) if gαi < gα j

H0(gα j ||gαi ||dhki j) otherwise
3. Compute key ski j := H2(Li j)

4. Query for set M j := {x : x ∈ LSi ∧H1(gα j ||x) ∈ BF j}

Figure 1: SDDR Non-Interactive Protocol.

Hiding Bloom filter load After receiving multiple
Bloom filters, and calculating the distribution of the
number of bits set, it is possible to determine the size
of the remote user’s set of advertiseIDs. This leaks infor-
mation, which could be used to link devices across mul-
tiple epochs. To prevent this leak, the Bloom filters are
padded to a global, uniform target number of elements
N. Rather than computing actual hashes, we randomly



USENIX Association  23rd USENIX Security Symposium 931

select K ∗ (N − |advertiseIDs|) (not necessarily distinct)
bits to set to 1, where K is the number of hash functions
used in creating the Bloom filter.

4.4 Identification and Authentication
Identification and mutual authentication are not required
by all applications, and hence are not a part of the basic
SDDR protocol. However, identification and authentica-
tion can be achieved easily on top of SDDR as follows:
Identification Identification allows a user to associate
a principal (e.g., “Bob”) to a specific encounter through
the use of out-of-band (OOB) mechanisms. As part of
the identification procedure, the users agree on the link
identifier (corresponding to the shared encounter) for the
purpose of selective linkability. If Alice wishes to be
recognizable by Bob in the future, she will insert the link
identifier into her advertiseIDs; likewise, if she wishes
to recognize Bob in the future, she will insert the link
identifier into her listenIDs. However, choosing to enable
(or revoke) recognizability is not part of the identification
procedure, and can be performed any time by the user
after the initial, one-time identification has taken place.

It is well known that achieving secure identification,
resistant to man-in-the-middle (MITM) attacks, requires
either an a priori shared secret or an OOB channel. Any
manual authentication technique [32,41,42,53] (e.g., dis-
playing and comparing pictures on both devices, gener-
ated from the link identifiers) allows Alice to securely
identify Bob’s device free of MITM attacks. Addition-
ally, a technique not relying on OOB mechanisms has
been proposed by Gollakota et al. [34] for 802.11, using
tamper-evident messaging to detect and avoid MITM at-
tacks. Note that many applications do not require identi-
fication, such as when users wish to (anonymously) share
photos with other event participants.
Mutual authentication Mutual authentication boot-
straps a secure and authenticated session between two
peers using an a priori shared secret (e.g., the link iden-
tifier agreed upon as part of the identification proce-
dure). Suppose that in a previous encounter, Alice and
Bob participated in the identification procedure; addi-
tionally, both Alice and Bob elected to add the shared
link identifier to both their advertiseIDs and listenIDs.
Thus, in future encounters, Alice and Bob can now au-
thenticate each other (free of MITM attacks). While
the basic SDDR protocol does not provide authenti-
cation, it can easily be achieved by sending an ex-
plicit verification message. For example, a user can
prove to a remote peer that they know the common link
identifier L by simply sending the verification message
〈nonce,H3(L||nonce||dhk)〉.

Alternatively, a user can execute a standard authenti-
cated key exchange (AKE) protocol; however, in the case
of SDDR, since a DH key is already exchanged, an ex-

plicit verification message is sufficient and cheaper than
a standard AKE protocol. Mutual authentication only
needs to be performed when requested by an application
(or user), and thus is not part of the base SDDR protocol.

4.5 Suppressing Bloom filter false positives
The false positive probability of a Bloom filter, denoted
as Pfp, is computed as a function of: the number of ele-
ments inserted (N), the size (in bits) of the Bloom filter
(M), and the number of hash functions per element (K).
Although Bose et al. [47] provide a more accurate (yet
not closed form) solution, Pfp is closely approximated by
the following formula:

Pfp =

(
1−

[
1− 1

M

]KN
)K

In the SDDR protocol, these false positives manifest
themselves as selectively linkable principals associated
with the remote device (and their current shared en-
counter). By default, false positives are not reduced over
the course of an epoch, and only mutual authentication
(see Section 4.4) will allow two peers to check if they are
selectively linkable (resolving any false positives). Ide-
ally, we want to provide a way for the matching set (Mj in
the protocol) to converge towards the exact intersection
of the remote peer’s advertiseIDs and the user’s listenIDs
over time.

If one creates multiple Bloom filters, each using a
unique set of hash functions (or salt value(s)), the inter-
section of the matching sets for the Bloom filters results
in an overall matching set with a reduced false positive
rate. Within a single epoch, a device can compute and
distribute beacons with unique Bloom filters that evolve
over time. Since beacons within the same epoch use
the same DH public key, we modify Step 2 within the
GenBeacon algorithm to additionally use an increment-
ing counter count as part of the salt:

BFi := BF{H1(gαi ||x||count) : x ∈ ASi}

count increments each time a beacon is broadcast, and
is reset to 0 at the start of every epoch. We use this ex-
tension as part of our implementation, as described in
Section 5.

5 SDDR on Android

We have implemented the SDDR protocol on the An-
droid platform as part of a system service. The codebase
is written in C++ and runs with root privileges1 . For
development and evaluation, we use Samsung Galaxy

1SDDR requires root privileges to handle address changes, as well
as to support efficient communication through Extended Inquiry Re-
sponse (EIR) payloads.
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Nexus phones running Android 4.1.2 2 with the android-
omap-tuna-3.0-jb-mr0 kernel. For our implementation,
we selected to use Bluetooth for short-range radio com-
munication; other short-range radios (e.g. WiFi, Zig-
Bee) could also be used for this purpose. We selected
Bluetooth 2.1 (BT2.1) over BT4 because a BT2.1 im-
plementation closely mirrors the protocol as described;
however, we designed a BT4 implementation for use in
EnCore [17]. We use elliptic curve cryptography (ECC)
due to the smaller key sizes relative to RSA, selecting the
192-bit curve as recommended by NIST [4].

We first describe the implementation of the major
components of the SDDR protocol: discovery, hand-
shake, and epoch change. Afterwards, we briefly de-
scribe the system service that we developed to allow all
applications running on the device to take advantage of
SDDR, without each independently managing discover-
ies. Finally, we discuss our integration of the system ser-
vice with the open-source Haggle framework [8].

5.1 SDDR Protocol Components
Discovery In the protocol, a single beacon is broadcast
throughout each epoch. In our implementation, since de-
vices must wake up to discover nearby devices and re-
ceive their beacon messages, we break down each epoch
into multiple discovery intervals. Using the protocol ex-
tension described in Section 4.5 to reduce Bloom filter
false positives, we generate and broadcast a new beacon
during every discovery interval.

There are two roles that devices can take on within
the Bluetooth 2.1 discovery protocol: discoverable and
inquirer. Every device always plays the role of discov-
erable, responding to incoming inquiry scans with infor-
mation on how the inquirer can establish a connection
(e.g., MAC address). By using the extended inquiry re-
sponse (EIR) feature present in BT2.1, which includes an
additional 240 byte payload added to the response, dis-
coverable devices can transmit their beacon to the dis-
coverer during the inquiry scan itself.

At the start of each discovery interval, a device ad-
ditionally takes on the role of inquirer, performing an
inquiry scan in order to collect and process beacon mes-
sages from nearby devices. In addition, the device will
update its EIR payload with a new beacon message; this
payload will be used as a response while discoverable.

Devices must only wake up when acting as a inquirer.
Otherwise, while simply discoverable, only the Blue-
tooth controller (and not the main CPU) must be active;
the controller wakes up every 1.28 seconds to listen and
respond to inquiry scans from nearby devices.

2The Android 4.4 release would provide additional energy savings
with respect to suspend and wakeup transitions due to the updated Alar-
mManager API.

Compute keys and recognize When a inquirer detects
a new device, which could also be an epoch change by
an existing device, it computes the shared secret for the
current epoch using the local DH private key and the
remote device’s DH public key (embedded in the bea-
con). For each device: 1) for its first beacon, the inquirer
queries the Bloom filter contained in the beacon using
H1(gαi ||x||count) for each x in its set of listenIDs; 2) for
subsequent beacons, the inquirer queries the Bloom filter
only for each x previously determined to be in the inter-
section.

Periodic MAC address change SDDR ensures that the
discovery and recognition protocol does not leak linkable
information. However, the underlying Bluetooth packets
have a static MAC address that can be used to track the
device (and the user). As part of our Bluetooth imple-
mentation, we choose a random Bluetooth MAC address
at the start of every epoch. BT2.1 does not provide a na-
tive interface for changing MAC addresses “on-the-fly”;
therefore, we reset the Bluetooth controller each time the
address is changed (once per epoch, nominally fifteen
minutes). Unfortunately, this reset closes ongoing con-
nections and invalidates existing device pairings; how-
ever, the BT4 specification supports changing the public
(random) address for the device while maintaining the
private address for paired devices.

5.2 SDDR Integration
We chose to implement the SDDR protocol as part of a
system service on Android. The centralized service al-
lows for greater energy efficiency as it can broadcasts
discovery information to all applications via IPC mecha-
nisms, as opposed to each application performing its own
discovery. Currently, we allow applications to connect
to the service via local Unix sockets. Applications re-
ceive messages for each discovered device, along with
the shared secret and identity information (if selectively
linkable) for SDDR-aware devices.

Haggle Haggle is a mobile communication platform
for device-to-device radio communication, and supports
a number of content sharing apps. A photo sharing app,
for instance, shares with nearby devices photos whose
textual attributes match a user’s specified interests.

To demonstrate some of SDDR’s capabilities, we have
modified Haggle to use SDDR. This enables Haggle and
its applications to communicate securely with nearby de-
vices, without revealing any linkable information and
without the risk of tracking by third parties. We have
modified Haggle’s photo sharing app to take advantage
of SDDR’s features. Users can add a special attribute to
a photo, which narrows its visibility to a specified set of
linkable user(s). If a photo carries this attribute, it is el-
igible for sharing only with devices of linkable users in
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this set. Finally, when a photo is shared, it is encrypted
with the shared key established by SDDR.

6 Experimental Results

In order to evaluate the design and implementation of
SDDR, we first perform a comparison to the strawman
protocol by focusing on the PSI portion in comparison
to our Bloom filter-based approach. Secondly, we look
at energy consumption both at the level of benchmark-
ing individual operations within the SDDR (and other)
protocols, as well as battery life consumption over the
course of a day. Additionally, we attempt to analyze the
scalability (and DoS resistance) of the SDDR protocol
by extrapolating energy consumption results to a large
number of devices. For a more application-level evalu-
ation, we refer the reader to our work on EnCore [17],
which includes a deployment with 35 users, using a BT4
implementation of SDDR.

6.1 Comparison with PSI
We measure the SDDR discovery protocol computation
time while varying the number of linkable identifiers,
and compare the elapsed time to that required for a PSI
protocol. We use an implementation [11] of the JL10
scheme [38], one of the fastest schemes known-to-date.
JL10 is secure and can be modified to achieve unlinka-
bility across sessions. Both protocols are executed using
a single core on the 1.2 GHz ARM Cortex-A9 processor.

Figure 2 shows the run times for each protocol; each
bar is an average of 50 runs, with error bars denoting
the 5th and 95th percentile values. We divide SDDR
into two separate trials, varying the number of adver-
tisements in order to achieve the specified false positive
rates for each trial. Additional advertisements do not re-
quire much computation time because SDDR only uses
the complete set of listen IDs for the first Bloom filter;
afterwards, SDDR uses the matching set of listen IDs,
which quickly converges towards the actual intersection.

Results show that SDDR is up to four orders of magni-
tude faster than standard PSI. The gain in performance is
crucial for practical deployment, as these computations
take place for every discovered device. In order to pre-
serve user privacy against tracking, large maximum set
sizes (128 to 256 entries) with random entry padding
must be used with typical PSI protocols; alternatively, a
size-hiding PSI scheme [18] can be used, but the perfor-
mance in practice is worse than the scheme we used [10].

6.2 Energy Consumption
SDDR runs on resource-constrained devices, therefore
we evaluate its energy consumption in detail. First, we
look at microbenchmarks for the individual components
of the protocol (e.g., discovery), as well as various idle
states, which provide a baseline for energy consumption.
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Figure 2: Protocol execution times of PSI versus SDDR
for an encounter with varying sizes of advertised sets of
link values. The “# disc” represents the number of dis-
covery beacons used to compute the matching set, with
Pfp as the associated false positive probability.

Second, we collect and analyze power traces of our pro-
tocol over several epochs in order to determine the bat-
tery life cost of frequently running our handshake proto-
col over the course of a day. Third, we estimate the re-
duction in battery consumption when in densely crowded
areas, or under denial of service attacks, a device discov-
ers the specification maximum of 255 devices per inquiry
scan [3]. In order to monitor energy consumption over
time, we use the BattOr [49] power monitor.
Microbenchmarks In Table 2, we outline the results
from the microbenchmark experiments. We collect 25
data points for each experiment, and present the aver-
age values in the table above. We enable airplane mode
on the device for each test, ensuring that all radio inter-
faces are disabled unless otherwise explicitly requested.
Idle state requires very little power, as the device remains
in suspended state with the main processor powered off.
Since epoch changes require disabling and re-enabling
the hardware Bluetooth controller, the controller requires
several seconds to return to its working state. An epoch
change requires 568mJ energy consumption — however,
note that epoch changes are relatively infrequent (e.g.,
every fifteen minutes) compared to discovery.

Additionally, we collected power traces for various
discovery and recognition protocols. When there are no
nearby devices, the baseline discovery protocol in Blue-
tooth 2.1 costs 1363mJ per discovery. In comparison,
our implementation of the SDDR protocol over Blue-
tooth 2.1 incurs only 7% additional energy cost while
executing the recognition protocol with 5 nearby devices
(and using 256 advertised and listen IDs). The imple-
mentation of the DH+PSI strawman over Bluetooth 2.1
requires much more energy per execution, over an order
of magnitude greater than the baseline (43,335mJ com-
pared to 1,363mJ). This is expected as the PSI protocol
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Avg. Power Energy
Component (mW) (mJ)
Idle 1.73 -
Bluetooth 2.1

Discovery (0 Devices) 118 1,363
Incoming Connection 200 893

Discovery and Recognition
(5 Devices, 256 Listen IDs)

SDDR over BT2.1 124 1,464
DH+PSI over BT2.1 404 43,335
ResolveAddr in BT4.0 226 737

SDDR Epoch Change 178 568

Table 2: Average power and energy consumed by various
components, or system states. Components which have
energy consumption marked as ’-’ have no well defined
duration.

is not as efficient as SDDR in terms of computation (See
Figure 2) and communication, and it must execute an in-
teractive protocol for each nearby device.

The ResolveAddr protocol, implemented as per the
Bluetooth 4.0 specification, requires less energy (737mJ)
compared to other schemes; however, it neither ex-
changes a session key, nor supports efficient revocation
of the set of linked users [3]. ResolveAddr is optimized
to support a limited feature set, and uses the efficient
broadcast channels made available in Bluetooth 4.0.

In addition, as a point of comparison between inter-
active and non-interactive protocols, we collected power
traces for a device waking up to handle an incoming
connection over Bluetooth 2.1 (without performing any
work). This incoming connection consumes an average
of 893mJ, which is roughly 65% of the cost of an en-
tire discovery operation. This connection cost scales lin-
early, which makes interactive protocols impractical for
handling many nearby devices.
Reduction in battery life In order to gauge the reduc-
tion in battery life of frequently running a discovery and
recognition protocol, we collected power traces for vari-
ous protocol configurations with up to 5 nearby devices
over the course of two epochs (30 minutes). For each
protocol, we evaluate two different discovery intervals
(60 and 120 seconds); existing applications, such as Hag-
gle [8], use a 120 second interval. Since the energy con-
sumption remains the same across two epochs, we ex-
trapolate the energy consumed to a full day (24 hour pe-
riod), as shown in Table 3.

The Samsung Galaxy Nexus battery has a capacity
of 6.48Wh, which we convert to 23,328J for the pur-
pose of comparisons within the table. With 5 nearby
devices, SDDR uses 5.57% of the battery life per day
with a 120 second discovery interval; ResolveAddr uses
slightly less than SDDR (around 3%), due to the reduced
discovery costs. In comparison, the DH+PSI protocol

Energy Battery
State (J) (%)
Full Battery 23,328 100
Idle 150 0.64
Idle with Bluetooth 188 0.81
Running (5 Devices, 256 Listen IDs)
(60s Discovery Interval)

SDDR over BT2.1 2,511 10.76
ResolveAddr in BT4.0 1,260 5.40
DH+PSI over BT2.1 44,619 191.27
IncConn over BT2.1 9,143 39.19

(120s Discovery Interval)
SDDR over BT2.1 1,300 5.57
ResolveAddr in BT4.0 718 3.08
DH+PSI over BT2.1 35,097 150.45

Table 3: Energy and battery life consumption for differ-
ent states and protocol configurations over the course of
one full day. A daily battery consumption of p% means
that the battery would last 100/p days if the device runs
the corresponding protocol and is otherwise idle.

consumes around 150% of the battery over the course of
24 hours. This means that the battery would completely
drain within 16 hours, or within only 12.6 hours when us-
ing the 60 second discovery interval. IncConn provides
a point of reference for the base-line battery life of an
interactive protocol—without executing any protocol, it
consumes around four times as much energy as SDDR.

As previously mentioned, we assume that each discov-
ery returns 5 new nearby devices; in the case of SDDR,
this requires computing the shared secret and using the
complete set of listen IDs (instead of the matching set)
to query the received Bloom filter. In practice, there will
not always be 100% churn in nearby devices in each dis-
covery period, meaning that these results are conserva-
tive estimates of actual energy consumption.

In order to provide a visual comparison between the
protocols, we present snapshots of a single 120 second
discovery interval for both the SDDR and DH+PSI pro-
tocols in Figure 3. These snapshots show the power con-
sumed at each point in time; energy consumption is com-
puted by integrating over a given interval of time. Both
protocols initiate a discovery at around the 20 second
mark. Since we designed the SDDR protocol to support
non-interactive execution, SDDR over BT2.1 can take
advantage of executing both the discovery and recog-
nition portions at the same time. Unlike SDDR, the
DH+PSI protocol must perform an interactive recogni-
tion protocol that takes longer than the discovery pro-
cess itself, and must be performed individually with
each nearby device. In the right half of the plot, both
devices handle incoming discovery and recognition re-
quests from nearby devices (5 for SDDR, and 1 for
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Figure 3: Power traces from running the SDDR and
DH+PSI protocols (implemented over Bluetooth 2.1) for
one discovery interval of 120 seconds.

DH+PSI). Even for the case of a single nearby device,
DH+PSI is not practical.
Crowds and DoS attacks A frequently running protocol
such as SDDR can potentially open up a new avenue of
attack, whereby attackers can try to exhaust the battery
of a victim device by forcing it to continually perform
new discoveries. Even in benign scenarios, a device may
legitimately perform many discoveries over a prolonged
interval, e.g., when the user is at a stadium or an in-
door auditorium, and the device encounters many other
Bluetooth enabled devices. In this section, we experi-
ment with these extreme scenarios, and show that SDDR
does not adversely affect battery consumption, regard-
less of the number of peers it discovers. At the same
time, SDDR is able to discover linked peers, and provide
reasonable performance even in crowded spaces.

In order to study these worst-case scenarios for SDDR,
we estimate the reduction in battery life assuming that
there are 255 new device responses for every inquiry scan
we perform. We use three components of energy con-
sumption for our estimate: idle with Bluetooth running in
discoverable mode (EBT ), epoch changes (EEC), and dis-
coveries (ED). Each of these components represents the
amount of energy consumed in mJ over the course of a
full day (24 hours), and together represent the aggregate
energy consumption while running the SDDR protocol:

ESDDR(d, i) = EBT (d, i)+EEC +ED(d, i) (1)

EBT (d, i) and ED(d, i) vary with respect to the number
of nearby devices (d), and the discovery interval in sec-
onds (i). We measured the average energy consumption
for cases of 1, 3, and 5 discovering devices, for discovery
intervals of 60 and 120 seconds. Additionally, we use the
results of the microbenchmarks from Table 2 to provide
formulas for the energy consumed by epoch changes and
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running the SDDR protocol, for varying numbers of
nearby devices.

discoveries. We assume a linear model, with respect to
the number of nearby devices (d), for each i (either 60
or 120 seconds) in computing the formulas for EBT (d, i)
and ED(d, i). The energy consumed by epoch changes
(EEC) does not vary with respect to d or i.

We validate Equation 1 by comparing its results to the
measured values from Table 3. Without any nearby de-
vices, our estimates are off by 1.96% and 0.66% for 60
and 120 second discovery intervals respectively. Like-
wise for the case of 5 devices, our estimates deviate from
the measurement results by 4.61% and 1.74%.

The estimated daily battery life consumption for vary-
ing numbers of nearby devices is shown in Figure 4.
Over the course of an entire day, running the SDDR
protocol with a 120 second discovery interval consumes
27.82% battery life in this worst-case scenario.
Comparison with SmokeScreen We compare the per-
formance of our protocol with SmokeScreen’s discovery
protocol [27]. SmokeScreen requires sending one clique
signal per advertised ID, and does not use a set-digest
data structure (e.g. Bloom filter) to aggregate them. In
the authors’ implementation, the clique signals are sent
over a Bluetooth name request, which holds 248 bytes of
data, i.e., roughly 4 clique signals. This makes Smoke-
Screen less scalable with larger advertised sets: 1) for
more than 4 advertised IDs, the clique signals have to
be sent over multiple Bluetooth name requests (increas-
ing the discovery latency), and 2) sending multiple name
requests for large advertised sets also lead to additional
energy consumption. SDDR requires a constant amount
of time to detect linkability to a given false positive rate,
while SmokeScreen’s detection time increases linearly
with respect to the number of clique signals.

Since the SmokeScreen measurements were reported
several years back, we re-evaluated the energy consump-
tion for SmokeScreen on a recent device. In our measure-
ment, we conservatively estimate the energy consump-
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tion for SmokeScreen, by measuring only communica-
tion related, but not computation- or storage-related en-
ergy overhead. Our results suggest that in the case of
one nearby device, SmokeScreen’s communication con-
sumes 1,628mJ of energy; for three devices, this in-
creases to 2,071mJ. Unfortunately, the cost of perform-
ing a name request for each individual nearby device is
prohibitively expensive. For the same amount of energy
spent by SmokeScreen with 3 nearby devices, SDDR
can discover and process 35 nearby devices (from Equa-
tion 1).

7 Discussion

In this section, we discuss properties and implications of
the somewhat unique communication model provided by
SDDR, which departs from the norm in two basic ways:

• SDDR decouples confidentiality from identity: en-
counter peers can communicate securely, even
though they do not know each other, and cannot rec-
ognize each other during future encounters.

• Communication within SDDR is both defined and
limited by radio range, which may not necessarily
conform to application semantics.

7.1 Confidentiality without Identity
SDDR’s secure encounter primitive provides, in effect,
a per-encounter mutual pseudonym for the encounter
peers, and an associated shared key. It enables the peers
to name each other and communicate securely during
their encounter, and at any time after their encounter via
an untrusted rendez-vous service. The peers can name
and authenticate each other as participants in a specific
encounter and communicate securely, while remaining
anonymous and unlinkable otherwise (assuming they do
not reveal linkable information within their communi-
cation). Interestingly, if the users choose, this type of
anonymous interaction during an encounter can form the
basis for mutual identification and authentication.

Prior systems rely on anonymous or unlinkable en-
counters between peers, such as SMILE [43] which sup-
ports finding missed connections, and SmokeScreen [27]
which allows two anonymous peers to exchange ad-
dresses for further communication (e.g., E-mail ad-
dresses) through the use of a trusted third party service.

7.2 Radio-Range Limited Communication
SDDR communication is limited to radio range, nom-
inally 10 meters for Bluetooth 2.1 (50 meters for the
latest Bluetooth 4.0 standard). From an application de-
sign point-of-view, range-limited communication may
inhibit, but can also prove useful.

Without a third-party data repository or additional pro-
tocol mechanisms, e.g., a multi-hop structure, applica-
tions that provide notifications among devices beyond ra-
dio range cannot be implemented. For example, SDDR
cannot be used to replicate the functionality of Google
Latitude, which provides updates on friend locations in-
dependent of physical distance.

Yet another problem may be that the radio range is
not limiting enough! For instance, consider an applica-
tion that wants to create pairwise encounters and share
a group secret only between users who are in the same
room. Nothing within SDDR will prevent messages
from being received outside the room, enabling a passive
eavesdropper to learn the group secret. External mecha-
nisms, in case of the room limited communication, pos-
sibly a fast attenuating ultrasound identification beacon
are required to manage the impedance mismatch between
application semantics and radio range. In general, ap-
plication designers may choose to use SDDR for a base
level of peer detection, and impose criteria that filters un-
wanted peers.

However, we note that radio range limited communi-
cation can have beneficial effects as well. In many situa-
tions, the Bluetooth radio range includes the attendees of
a socially meaningful event—those with whom a user is
likely to interact or share an experience.

Finally, the confidentiality and anonymity provided by
SDDR may disproportionately empower abusive users,
who could, e.g., spam or otherwise abuse those who are
nearby. Here, radio range limited communication pro-
vides both a bound on abusive communication and a
rudimentary form of accountability. If SDDR is used
for malice, the victim is assured that the source of the
communication is nearby. The victim could move, or
provide evidence of misbehavior (received messages) to
law-enforcement authorities. The physical proximity (ei-
ther of the sender or an accomplice) required for commu-
nication within SDDR can potentially serve as a deterrent
to abusive communication.

8 Conclusion

In this paper, we articulate the need for efficient secure
mobile encounters and their requirements, including se-
lective linkability and efficient revocation. We propose
a light-weight protocol called SDDR, which provably
meets the security requirements under the random oracle
model, and enables highly scalable and energy-efficient
implementations using Bluetooth. Experimental results
show that our protocol outperforms standard Private Set
Intersection by four orders of magnitude. Additionally,
its energy efficiency exceeds that of SmokeScreen by an
order of magnitude, while supporting stronger guaran-
tees. Energy consumption (and the resulting battery life)
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remain practical even under worst-case conditions like
dense crowds or DoS attacks.
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A Formal Security Definitions and Proofs

A.1 Overview
We follow a standard game-based approach for defining secu-
rity. We describe a game between an adversary and challenger.
The adversary controls the communication medium, and is al-
lowed to schedule the actions of legitimate users. For example,
the adversary can instruct a legitimate user to run GenBeacon
to generate a discovery beacon; or instruct a recipient to receive
the beacon(s) and call Recognize to determine the linkability
of discovered neighbors. The adversary can also instruct a le-
gitimate user to perform handshake with any member of the
compromised coalition. Link identifiers generated during such
a handshake (with the adversary) are marked as compromised
(i.e., known to the adversary). In addition, the adversary can ex-
plicitly compromise an encounter between two legitimate users
in which case the secret link identifier and shared key are ex-
posed; or explicitly compromise a user in which case all its
internal states, including previous link identifiers, are exposed.

At some point during the game, the adversary will issue a
challenge, either an anonymity challenge or a confidentiality
challenge.

An anonymity challenge intuitively captures the notion that
an adversary cannot break a legitimate user’s anonymity, unless
the legitimate user has authorized linkability to a party within
the adversary’s coalition. Note that this part of the definition
captures the unlinkability, selective linkability, and revocability
requirements (See Section 3.1) simultaneously.

A confidentiality challenge intuitively captures the notion
that an eavesdropping cannot learn anything about the (online
or post-hoc) communication in between two legitimate users.
This is guaranteed since for any two users that remain uncom-
promised at the end of the security, their shared key established
for some time epoch t is as good as “random” to the adversary
(assuming their encounter in time epoch t also remains uncom-
promised by the end of the security game).

A.2 Formal Security Definitions
We define the following security game between and an adver-
sary A and a challenger C . The time epoch t is initialized to 0
at the beginning of the game. The adversary adaptively makes
a sequence of queries as below.

Next time epoch. Increments the current time epoch t.

Expose handshake beacons. The adversary specifies an un-
compromised user Pi, identifiers of a subset Si of Pi’s previous
encounters, and asks the challenger to expose Pi’s handshake
beacon in the current time step t using the subset of previous
encounters Si.

Handshake - Uncompromised users. The adversary speci-
fies two uncompromised users Pi and Pj, such that Pj can hear
Pi in the current time epoch t. After receiving Pi’s handshake
beacon, Pj calls the Recognize algorithm, and updates its local
state accordingly. The adversary does not obtain information
from the challenger for this query.

Handshake - Adversary. The adversary sends a handshake
beacon to an uncompromised user Pi. Pi calls the Recognize
algorithm, and updates its local state. The identifier of this en-
counter is marked as compromised. The adversary does not
obtain any information from the challenger for this query.

Compromise - Encounter. The adversary specifies a reference
to an encounter which took place in time t ′ ≤ t between two
uncompromised users Pi and Pj, and the challenger reveals to
the adversary the corresponding link identifier, encounter key,
and any additional information associated with this encounter.

Compromise - User. The adversary specifies an uncompro-
mised user Pi. The adversary learns all Pi’s internal state, in-
cluding the list of all previous link identifiers, encounter keys,
received beacons, and any additional information associated
with Pi’s previous encounters3. Pi and all of its link identifiers
are marked as compromised.

Challenge. There can only be one challenge query in the entire
game, of one of the following types. In both cases, the adver-
sary outputs a guess b′ of b selected by the challenger.

• Anonymity. Adversary specifies two users Pi and Pj who
must remain uncompromised at the end of the game. The ad-
versary specifies Si and S j to the challenger, which (respec-
tively) denote a subset of Pi’s and Pj’s previous encounters
that must remain uncompromised at the end of the game. We
require that |Si|= |S j|. Furthermore, at the end of the game,
the adversary must not have issued an “expose handshake
beacon” query in the current time step for Pi (or Pj) involv-
ing any element in the subset Si (or S j).
The challenger flips a random coin b. If b = 0, the challenger
constructs Pi’s handshake beacon for the current time epoch
t for the set Si, and returns it to adversary. If b = 1, the
challenger constructs Pj’s handshake beacon for the set S j,
and returns it to adversary.

• Confidentiality. The adversary specifies two users Pi and
Pj who must remain uncompromised at the end of the game.

3Specific to our construction, the internal states also include the
exponents of Pi’s own DH beacons in all previous time epochs.
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Furthermore, the encounter between Pi and Pj during time
epoch t must also remain uncompromised at the end of the
game.
The challenger flips a random coin b. If b = 0, challenger
returns the encounter key ski j established between Pi and Pj
in time epoch t. If b= 1, challenger returns a random number
(from an appropriate range).

Definition 1 (Anonymity, Selective linkability). Suppose that
the adversary A makes a single anonymity challenge in the
above security game. The advantage of such an adversary
A is defined as Advlink(A ) := |Pr[b′ = b]− 1

2 |. We say that
our handshake protocol satisfies selective linkability, if the ad-
vantage of any polynomially bounded adversary (making an
anonymity challenge) in the above game is a negligible func-
tion in the security parameter.

Definition 2 (Confidentiality). Suppose that the adversary A
makes a single confidentiality challenge in the above security
game. The advantage of such an adversary A is defined as
Adv(A )conf := |Pr[b′ = b]− 1

2 |. We say that our handshake
protocol satisfies confidentiality, if the advantage of any poly-
nomially bounded adversary (making a confidentiality chal-
lenge) in the above game is a negligible function in the security
parameter.

A.3 Proofs of Security
Theorem 1 (Anonymity, selective linkability). Assume that the
CDH problem is hard. For any polynomial-time algorithm A ,
under the random oracle model,

Advlink(A )≤ negl(λ )

where λ is the security parameter.

Proof. If there is an adversary that can break the anonymity
game with probability ε , we can construct a simulator which
breaks CDH assumption with probability ε

poly(N,T,qo)
, where N

denotes the total number of users, T denotes the total number
of epochs, and qo denotes the number of random oracle queries.
Revealing hashes instead of Bloom filter In the challenge
stage, the Pi∗ ’s Bloom filter will have m elements. Instead of an-
nouncing the Bloom filter, we assume for the proof that users
simply broadcast the outcomes of the hash functions used to
construct the Bloom filter. This will only reveal more informa-
tion to the adversary – so as long as we can prove the secu-
rity when these hashes are revealed, we immediately guarantee
security when the Bloom filter instead of the hash values are
revealed.
Real-or-random version and sequence of hybrid games
Instead of proving the left-or-right version of the game as in
the security definition, we prove the real-or-random version.
Namely, the adversary specifies one user Pi (instead of two) in
the anonymity challenge (who must remain uncompromised at
the end of the game), as well as a subset of Pi’s previous en-
counters (which must remain uncompromised at the end of the
game). The challenger flips a random coin, and either returns
the faithful hash values to the adversary, or returns a list of ran-
dom values from an appropriate range. The adversary’s job is
to distinguish which case it is.

We use a sequence of hybrid games. In the k-th game, re-
place the k-th hash (out of m hashes) in the challenge stage
with some random value from an appropriate range.
Simulator construction The simulator obtains a CDH in-
stance gα ,gβ . The simulator guesses that the k-th encounter
in the anonymity challenge took place between users Pi∗ and
Pî∗ in time step τ . If the guess turns out to be wrong later, the
simulator simply aborts. The simulator answers the following
queries:

Expose handshake beacons. First, the simulator generates the
DH beacons as below: except for users Pi∗ and Pî∗ in time step
τ , the simulator generates all other DH beacons normally. For
Pi∗ and Pî∗ in time step τ , their DH beacons will incorporate gα

and gβ respectively. Notice that the simulator does not know α ,
β , or the dhk := gαβ . Except for gαβ , the simulator can com-
pute all other dhks between two uncompromised users (even
when one of gα or gβ is involved) since the simulator knows
the exponent of at least one DH beacon.

In generating the hashes for the Bloom filter, each hash can
correspond to an encounter of the following types:

• Case 1: The hash does not involve an encounter in time τ .
The simulator can compute the dhk and link identifier nor-
mally in this case.

• Case 2: The hash corresponds to an encounter in time τ , but
at least one of the parties in the encounter is an uncompro-
mised user (at the time of the challenge query) other than
Pi∗ , Pî∗ . Notice that the simulator can compute the dhk (and
hence the link identifier) in this case, since the simulator
knows the exponent of the DH beacon of the other party.

• Case 3: The hash corresponds to an encounter in time τ , and
between Pi∗ and Pî∗ . In this case, the simulator does not know
the dhk= gαβ .

• Case 4: The hash corresponds to an encounter in time τ ,
and between Pi∗ (or Pî∗ ) and the adversary. Suppose in this
encounter in question, the adversary sent Pi∗ the DH beacon
gγ . (The case for Pî∗ is similar and omitted). The simulator
does not know the dhk= gαγ in this case.

Regardless of which type of encounter the hash corresponds
to, as long as the simulator knows the dhk of this encounter, it
can compute the link identifier and Bloom filters. Below, when
we explain how to answer queries of the types “Handshake -
Uncompromised users” and “Handshake - Adversary”, we will
explain how the simulator generates and records a link identi-
fier for each of these encounters – even when it may not know
the dhk (Cases 3 and 4). In this way, the simulator can answer
queries for Cases 3 and 4 as well.

Handshake - Uncompromised users. Except for the en-
counter between Pi∗ and Pî∗ in time epoch τ , for all other en-
counters, the simulator can compute the resulting dhks for both
uncompromised users – even when one of gα or gβ is involved.
Therefore, the simulator computes and saves the dhk, which
may later be used in answering “expose handshake beacon”
queries.

For the encounter between Pi∗ and Pî∗ in time τ , since the
simulator does not know dhk := gαβ , it simply chooses a ran-
dom link identifier and saves it internally, which will later be
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used in answer “Expose handshake beacon” queries to con-
struct Bloom filters.

Handshake - Adversary. Except when time step τ and user
Pi∗ or Pî∗ are involved, the simulator can proceed normally, and
generate and dhk and other secrets that are derived as hashes of
the dhk.

For time step τ , and Pi∗ or Pî∗ , something special needs to
be done. Assume the adversary sends Pi∗ handshake beacon gγ

(the case for Pî∗ is similar and omitted). The simulator does
not know α or γ , hence it cannot compute the corresponding
dhk := gαγ . Without loss of generality, assume gα < gγ . The
simulator picks a random link identifier L∗ – intended to be the
link identifier for this encounter with the adversary. The simu-
lator saves L∗, which will later be used in answering “Expose
handshake beacon” queries.

The simulator informs the random hash oracle of the tuple
(L∗, gα , gγ ). Later, random oracle may receive multiple queries
of the form H0(gα ||gγ ||Z). Suppose there are at most qo of
these queries. With probability 1

qo+1 , the hash oracle never uses

encK∗ as the answer. With probability 1− 1
qo+1 , the hash or-

acle guesses one of these queries at random, and uses L∗ as
the answer. The simulator guesses correctly with probability at
least 1

qo+1 where qo is the number of hash oracle queries.

Compromise - Encounter. The adversary specifies a reference
to a previous encounter (i, j, t ′), where users Pi and Pj are un-
compromised thus far. If i and j are not i∗ or î∗, or t ′ �= τ , the
simulator answers the query normally.

If t ′ = τ , i and j cannot simultaneously be i∗ and î∗, oth-
erwise the simulator would have aborted. If one of i or j is
i∗ or î∗, the simulator can still answer the query, even without
knowing α or β – since the simulator knows the exponent of
the other player’s DH beacon.

Compromise - User. If the adversary issues this query for user
Pi∗ or Pî∗ , the simulator simply aborts. For all other uses, the
query can be answered normally.

Random oracle. Above, we mentioned how the random oracle
handles queries of the form H0(gα ||gγ ||Z), where gγ was a DH
beacon from the adversary in a “Handshake - Adversary” query.
For all other random oracle queries, the simulator picks random
numbers to answer. The simulator records previous random
oracle queries, so in case of a duplicate query, the same answer
is given. Whenever the simulator needs to evaluate the hash
function, it also queries its own random oracle.

Challenge - Anonymity. The Bloom filter hash values re-
quested in the challenge stage must not have been queried in
an “Expose handshake beacon” query. In the k-th hybrid game,
the simulator outputs random values for the first k hashes. For
the rest, the simulator constructs the answers normally – since
these encounters happened before time τ , the simulator can
compute their link identifiers and compute these hashes nor-
mally.

Without loss of generality, assume that gα < gβ . In the
above simulation, the simulator makes all guesses correctly
with probability at least 1

poly(N,T,qo)
. Conditioned on the fact

that the simulator made all guesses correctly, unless the ad-
versary queried H0(gα ||gβ ||gαβ ), the (k − 1)-th and k-th hy-
brid games are information theoretically indistinguishable from
each other to the adversary. Now the adversary cannot have
queried at any point H0(gα ||gβ ||gαβ ) with more than negligi-
ble probability, since otherwise we can construct a simulator
that outputs gαβ with non-negligible probability, thus breaking
the CDH assumption.

Theorem 2 (Confidentiality). Assume that the CDH problem
is hard. For any PPT algorithm A , under the random oracle
model,

Advconf(A )≤ negl(λ )

where λ is the security parameter.

Proof. The simulator guesses that the adversary will issue a
confidentiality between users Pi∗ and Pî∗ in time epoch τ . If the
guess turns out to be wrong later, the simulator simply aborts.

Suppose that simulator gets a CDH instance (gα ,gβ ). The
simulator would then answer all queries exactly as in the proof
of Theorem 1, except for the challenge – instead of submitting
a anonymity challenge, the adversary now submits a confiden-
tiality challenge:

Challenge - Confidentiality. If i, j, and current time epoch τ
does not agree with what the simulator had guessed, the simu-
lator simply aborts. Otherwise, the simulator would have cho-
sen a random link identifier in a “Handshake - Uncompromised
users” query for (i∗, î∗,τ). The encounter key of this session is
obtained by making a random oracle query on H2(L).

The simulator makes all guesses correctly with probability
at least 1

poly(N,T,qo)
. Conditioned on the fact that all guesses are

correct, the encounter key returned in the challenge stage is in-
formation theoretically indistinguishable from random, unless
the adversary has queried H0(gα ||gβ ||gαβ ) (assuming gα < gβ

without loss of generality). However, if the adversary makes
such a random oracle query with non-negligible probability, we
can construct a simulation that leverages the adversary to break
the CDH assumption.

A.4 Co-Linking
Proposition 1. Any non-interactive handshake protocol must
be subject to a co-linking attack.

Proof. In an non-interactive protocol, a user Alice publishes a
message M in a certain time epoch. Suppose Bob and Charles
have met Alice before (in encounters with link-ids L and L′

respectively), and Alice has granted both of them permission
to link her. Bob should be able to derive from his secret state
and the message M, the link identifier L linking this encounter
to the previous encounter L. Similarly, with his secret state and
the message M, Charles should also be able to derive L′. Now
trivially, if Bob and Charles collude, they can decide that the
message M can be linked to previous encounters L and L′.




