Firmament

Fast, centralized cluster scheduling at scale
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Meet Sesame, Inc.

e Sesame’s employees run:

1. Interactive data analytics
that must complete in seconds

2. Long-running services
that must provide high performance

3. Batch processing jobs
that increase resource utilization




The cluster scheduler must achieve:

1. Good task placements
o high utilization without interference

2. Low task scheduling latency
o support interactive tasks

o no idle resources




State of the art
Good task ” Low scheduling

placements latency
Centralized Distributed
Sophisticated algorithms Simple heuristics
[Borg, Quincy, Quasar] [Sparrow, Tarcil, Yag-d]
Hybrid

Split workload, provide either
[Mercury, Hawk, Eagle]

Can’t get both good placements and

low latency for the entire workload!




Firmament provides a solution!

e Centralized architecture

e (Good task placements
e Low task scheduling latency

e Scales to 10,000+ machines




> Finds optimal task
placements

> Min-cost flow-based
centralized scheduler

Quincy: Fair
Scheduling for

Distributed
Computing Clusters
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ABSTRACT 600

This paper addresses the problem of scheduling concurrent jobs on 2 500

clusters where application data is stored on the computing nodes. 2400

This setting, in which scheduling computations close to their data 5 00

is crucial for performance, is increasingly common and arises in 2

systems such as MapReduce, Hadoop, and Dryad as well as many E o

grid-computing environments. We argue that data-intensive com- < 10

putation benefits from a fine-grain resource sharing model that dif- 0

fers from the coarser semi-static resource allocations implemented 10 100 1000

| | bv most existine cluster computine architectures. The problem of Running timea in minutes |










@ Interactive

{Considers tasks for migration or preemption J@ Batch

@ Service
.A. ! b :

Min-cost flow scheduler

Migrate

Preempt
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Introduction to min-cost flow scheduling

‘

_‘ Cost: 7 [ ]

Min-cost flow places tasks with minimum overall cost




Introduction to min-cost flow scheduling

Flow supply

1 Cost: 3




Introduction to min-cost flow scheduling

Flow supply




How well does
the Quincy
approach scale?
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Simulated Quincy using Google trace, 50% utilization 1o
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Contributions

e Low task scheduling latency

o Uses best suited min-cost flow algorithm
o Incrementally recomputes the solution

e Good task placement

o Same optimal placements as Quincy
o Customizable scheduling policies
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scheduler

Scheduling policy

Scheduler

Task table

Task statistics

Cluster topology

Ryachine

machine

Agent
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Specifying scheduling policies

class QuincyPolicy {

Cost_t TaskToResourceNodeCos
TaskID_t task_id)
return task_unscheduled_time *
quincy_wait_time_factor;

Defines flow graph
}

}...
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Scheduling policy Scheduler
Defines graph
Flow graph /,
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Scheduling policy

l Defines graph

Flow graph

l Submits graph

Min-cost,
max-flow solver
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______

Scheduling policy

Task table

Task statistics

Cluster topology

Defines graph

gac ine

7/ Agent o —

t

Submits graph

Min-cost
max-flow solver

IIMOSt time T
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Algorithm Worst-case complexity

Cost scaling O(V?Elog(VC))

Used by Quincy

E: number of arcs

V. number of nodes

U: largest arc capacity
C: largest cost value

E>V>C=U
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Subsampled Google trace, 50% slot utilization [Quincy policy]
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Cost scaling is too slow beyond 1,000 machines
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Algorithm Worst-case complexity

Cost scaling O(V?Elog(VC))
Successive shortest path |O(V2Ulog(V))

E: number of arcs

V. number of nodes

U: largest arc capacity
C: largest cost value

E>V>C=U

29



Subsampled Google trace, 50% slot utilization [Quincy policy]
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Successive shortest path only scales to ~100 machines




Algorithm Worst-case complexity
Cost scaling O(V?Elog(VC))
Successive shortest path |O(V2Ulog(V))

Relaxation ‘ O(E°CU?)

E: number of arcs Highest
V: number of nodes complexity
U: largest arc capacity

C: largest cost value

E>V>C=U
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beftter

«

Subsampled Google trace, 50% slot utilization [Quincy policy]
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Relaxation meets our sub-second latency goal =




Why is Relaxation fast?
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Single-ish pass flow push
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Relaxation is well-suited to the graph structure




Machine utilization
H O
.

high medium
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Machine utilization
H O
.

high medium
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Relaxation suffers in pathological edge cases

Machine utilization

90000

Relaxation cannot push flow in a single pass any more




How bad does
Relaxation’s edge
case get?

Experimental setup:
. ® Simulated 12,500 machine cluster
B ¢ Used the Quincy scheduling policy
82, o Utilization >90% to oversubscribed cluster
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Quincy, 12,500 machines cluster, job of increasing size
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Quincy, 12,500 machines cluster, job of increasing size
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Quincy, 12,500 machines cluster, job of increasing size
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Cost scaling is unaffected by high utilization
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Min-cost max-flow solver

Input graph

q
q
L B

Relaxation

Scheduling policy

Flow graph

~
~
~
~ -~
~ .

Min-cost,
max-flow solver

Output flow
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Quincy, 12,500 machines cluster, job of increasing size
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Input graph

Min-cost max-flow solver
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Min-cost max-flow solver

Graph changes

Cost scaling

Output flow
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Flow graph

Min-cost,
max-flow solver
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Quincy, 12,500 machines cluster, job of increasing size
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Evaluation

Does Firmament choose
good placements with
low latency?




How do Firmament’s
placements compare to
other schedulers?

Experimental setup:
. ¢ Homogeneous 40-machine cluster, 10G network
B ¢ Mixed batch/service/interactive workload
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Firmament chooses good placements
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Firmament chooses good placements
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Firmament chooses good placements
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Firmament chooses good placements
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Firmament outperforms centralized and
distributed schedulers 52




How well does
Firmament handle
challenging workloads?

_ Experimental setup:
B ¢ Simulated 12,500 machine Google cluster
¥4, ® Used the centralized Quincy scheduling policy

g o Utilization varies between 75% and 95%
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Firmament handles challenging workloads at low latency
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Firmament handles challenging workloads at low latency

M Cost scaling (Quincy)

60 ——
3
2, D Wi
2
S 4
5| 2 I - F B
= = 30 i 0
((b) L
Q £
S 20+
= 45 seconds average latency
~ 10} |(tuned over Quincy setup’s 66s)
v E
0

Ix 50x 100x 150x 200x 250x

Average latency is too high even

without many short tasks 55




Firmament handles challenging workloads at low latency
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Firmament handles challenging workloads at low latency
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Conclusions

e Low task scheduling latency

o Uses best algorithm at all times
o Incrementally recomputes solution

e Good task placement

o Same optimal placements as Quincy
o Customizable scheduling policies

Open-source and available at:

firmament.io
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http://firmament.io
http://firmament.io

