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Meet Sesame, Inc.

● Sesame’s employees run:

1. Interactive data analytics
that must complete in seconds

2

Sesame Inc

3. Batch processing jobs
that increase resource utilization

2. Long-running services
that must provide high performance



The cluster scheduler must achieve:
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1. Good task placements
○ high utilization without interference

2. Low task scheduling latency
○ support interactive tasks

○ no idle resources

Ideal scheduler
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State of the art

Centralized vs. distributed

Good task 
placements

Low scheduling 
latency

Centralized
Sophisticated algorithms

[Borg, Quincy, Quasar]

Distributed
Simple heuristics

[Sparrow, Tarcil, Yaq-d]

Can’t get both good placements and 
low latency for the entire workload! 

Hybrid
Split workload, provide either

[Mercury, Hawk, Eagle]
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Firmament provides a solution!

Centralized vs. distributed

● Centralized architecture

● Good task placements

● Low task scheduling latency

● Scales to 10,000+ machines



➢ Finds optimal task 
placements

➢ Min-cost flow-based
centralized scheduler
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Quincy: Fair 
Scheduling for 

Distributed
Computing Clusters

Flow-based intro

Copyright - Heather Gwinn



Min-cost flow scheduler

Rack 1 Rack 2

Interactive

Batch

Service
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Flow-based schedules all tasks

Preference for first rack Me too!



Min-cost flow scheduler

Rack 1 Rack 2

Interactive

Batch

Service
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Schedules all tasks at the same time

Flow-based schedules all tasks



Min-cost flow scheduler
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Batch

Service
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Flow-based schedules all tasks

Migrate
Preempt

Considers tasks for migration or preemption



Min-cost flow scheduler

Rack 1 Rack 2

Interactive

Batch

Service
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Flow-based schedules all tasks

Globally optimal placement!
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Introduction to min-cost flow scheduling
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Flow scheduling: tasks & machines
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Introduction to min-cost flow scheduling
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Flow scheduling: tasks to machines
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Introduction to min-cost flow scheduling
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Flow scheduling: zoom in
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Introduction to min-cost flow scheduling
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Flow scheduling: Min costs for all
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Min-cost flow places tasks with minimum overall cost



Introduction to min-cost flow scheduling
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Flow scheduling: pushing flow for n tasks
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Introduction to min-cost flow scheduling
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Flow scheduling: pushing flow for n tasks
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How well does
the Quincy 

approach scale?

Quincy doesn’t scale: intro



Simulated Quincy using Google trace, 50% utilization
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Google cluster
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Quincy doesn’t scale: empty figure



Simulated Quincy using Google trace, 50% utilization
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66 sec on average

Too slow! 30% of tasks wait to be 
scheduled for over 33% of their 
runtime and waste resources 19

Quincy doesn’t scale



Simulated Quincy using Google trace, 50% utilization
Goal: sub-second scheduling latency in 

common case

be
tte

r
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Quincy doesn’t scale

Goal
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Contributions

Firmament contributions

● Low task scheduling latency
○ Uses best suited min-cost flow algorithm
○ Incrementally recomputes the solution

● Good task placement
○ Same optimal placements as Quincy
○ Customizable scheduling policies



Scheduling policy
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SchedulerScheduling policy

Flow graph

Scheduling policy

Firmament scheduler: intro
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class QuincyPolicy {

 Cost_t TaskToResourceNodeCost(
  TaskID_t task_id) {
  return task_unscheduled_time *
    quincy_wait_time_factor;
 }
 ...
}

Specifying scheduling policies

Firmament policy specification

Defines flow graph

N.B: More details in the 
paper.



Scheduling policy
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Defines graph

Flow graph

Firmament scheduler: intro



Scheduling policy

25

sc
he

du
le

r

m
as

te
r

Task table

Task statistics

Agent Agent

Cluster topology

m
ac

hi
ne

 

m
ac

hi
ne

 

SchedulerScheduling policy

Flow graph

Min-cost, 
max-flow solver

Submits graph

Firmament scheduler: submit to solver

Defines graph



Scheduling policy
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Firmament scheduler: slow min-cost flow solver

Defines graph

Submits graph
Most time
spent here
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Algorithm Worst-case complexity
Cost scaling O(V2Elog(VC))

E: number of arcs
V: number of nodes
U: largest arc capacity
C: largest cost value
E > V > C ≅ U

Algorithms complexity: Successive shortest path

Used by Quincy
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Cost scaling is too slow beyond 1,000 machines

Subsampled Google trace, 50% slot utilization [Quincy policy]
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Goal

Algorithms results: Cost scaling



29

Algorithm Worst-case complexity
Cost scaling O(V2Elog(VC))

Successive shortest path O(V2Ulog(V))

E: number of arcs
V: number of nodes
U: largest arc capacity
C: largest cost value
E > V > C ≅ U

Algorithms complexity: Cost scaling

Lower worst-case complexity



Successive shortest path only scales to ~100 machines

be
tte

r
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Goal

Algorithms results: successive shortest path

Subsampled Google trace, 50% slot utilization [Quincy policy]
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Algorithm Worst-case complexity
Cost scaling O(V2Elog(VC))

Successive shortest path O(V2Ulog(V))

Relaxation O(E3CU2)

E: number of arcs
V: number of nodes
U: largest arc capacity
C: largest cost value
E > V > C ≅ U

Highest 
complexity

Algorithms complexity: Relaxation
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Relaxation meets our sub-second latency goal 32
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Algorithms results: Relaxation

Subsampled Google trace, 50% slot utilization [Quincy policy]
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Relaxation is well-suited to the graph structure 33

Why is Relaxation fast?

Relaxation single-ish pass
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Capacity: 1 task
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Relaxation suffers in pathological edge cases

Slow Relaxation: tasks -> machine

Machine utilization

high medium
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Relaxation suffers in pathological edge cases

Slow Relaxation: machine -> sink

Capacity: 1 task

Machine utilization

high medium



Machine utilization

high medium
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Relaxation suffers in pathological edge cases

Slow Relaxation: machine -> tasks

Relaxation cannot push flow in a single pass any more 
36

Capacity: 0 tasks
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How bad does
Relaxation’s edge

case get?
Experimental setup:
● Simulated 12,500 machine cluster
● Used the Quincy scheduling policy
● Utilization >90% to oversubscribed cluster

High utilization introduction



Quincy, 12,500 machines cluster, job of increasing size
be

tte
r
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High utilization empty figure



Relaxation’s runtime increases with utilization

Quincy, 12,500 machines cluster, job of increasing size
be

tte
r
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High utilization Relaxation



Cost scaling is unaffected by high utilization

be
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r
Quincy, 12,500 machines cluster, job of increasing size
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Cost scaling is faster Best

High utilization Relaxation & Cost scaling



Sedulin
g policy
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Quincy, 12,500 machines cluster, job of increasing size

Algorithm runtime is still high at utilization > 94% 42

High utilization push-down runtime



Sedulin
g policy
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Incremental cost scaling introduction



Sedulin
g policy
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Quincy, 12,500 machines cluster, job of increasing size
be

tte
r

Incremental cost scaling is ~2x faster 45

Incremental Cost scaling results



Note:  many additional 

experiments in the paper.

46

Evaluation

Centralized vs. distributed

Good task 
placements

Low scheduling 
latency

Centralized
Sophisticated algorithms

e.g., Borg, Quincy, Quasar

Distributed
Simple heuristics

e.g., Sparrow, Tarcil

Does Firmament choose 
good placements with 

low latency?
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How do Firmament’s 
placements compare to 

other schedulers?

Experimental setup:
● Homogeneous 40-machine cluster, 10G network
● Mixed batch/service/interactive workload

Workload-mix intro



SCHEDULER

Interactive

Service

M1 M2 M3 M4 M8M7M6M5 M9 M10

R1 R2

Agg

Network utilization: low medium high 48

Workload mix-service task figure
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better

Workload-mix Sparrow

5 seconds task response time on idle cluster

Firmament chooses good placements



Sparrow is unaware of resource utilization 50

better

20% of tasks experience poor 
placement

Workload-mix Sparrow

Firmament chooses good placements



Centralized Kubernetes and Docker still suffer 51

better

Workload-mix Docker

Firmament chooses good placements

20% of tasks experience poor 
placement
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better

Avoided co-location interference

Workload-mix Firmament

Firmament chooses good placements

Firmament outperforms centralized and 
distributed schedulers
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How well does
Firmament handle 

challenging workloads?

Experimental setup:
● Simulated 12,500 machine Google cluster
● Used the centralized Quincy scheduling policy
● Utilization varies between 75% and 95%

Google acceleration introduction
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Google acceleration empty figure

Firmament handles challenging workloads at low latency

Google trace,  12,500 machines, 
utilization between 75% and 90%

Simulate interactive workloads by 
scaling down task runtimes

be
tte

r

Median task 
runtime: 420s

Median task 
runtime: 1.7s



Google trace,  12,500 machines, 
utilization between 75% and 90% 55

be
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r

Average latency is too high even 
without many short tasks 

Google acceleration Cost scaling

45 seconds average latency 
(tuned over Quincy setup’s 66s)

Firmament handles challenging workloads at low latency



Google trace,  12,500 machines, 
utilization between 75% and 90%

Latency with a 250x acceleration:
75th percentile: 2 sec

maximum: 57 sec 56

be
tte

r
Firmament handles challenging workloads at low latency

Google acceleration Relaxation



Google trace,  12,500 machines, 
utilization between 75% and 90% 57

Firmament’s common-case latency is 
sub-second even at 250x acceleration

be
tte

r

Google acceleration Firmament

Firmament handles challenging workloads at low latency



Conclusions
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firmament.io

Conclusions

● Low task scheduling latency
○ Uses best algorithm at all times
○ Incrementally recomputes solution

● Good task placement
○ Same optimal placements as Quincy
○ Customizable scheduling policies

Open-source and available at:

http://firmament.io
http://firmament.io

