Firmament

Fast, centralized cluster scheduling at scale

SHS

IoneIGogkg

Malte Schwarzkopf Adam Gleave

Robert N. M. Watson # Steven Hand

L

UNIVERSITY OF e g
CAMBRIDGE I CloTole

¥ 1 ARY

ol

AAAAA ﬁ‘i‘i‘
2 3‘$ ’;

Meet Sesame, Inc.

e Sesame’s employees run:

1. Interactive data analytics
that must complete in seconds

2. Long-running services
that must provide high performance

3. Batch processing jobs
that increase resource utilization

The cluster scheduler must achieve:

1. Good task placements
o high utilization without interference

2. Low task scheduling latency
o support interactive tasks

o no idle resources

State of the art
Good task ” Low scheduling

placements latency
Centralized Distributed
Sophisticated algorithms Simple heuristics
[Borg, Quincy, Quasar] [Sparrow, Tarcil, Yag-d]
Hybrid

Split workload, provide either
[Mercury, Hawk, Eagle]

Can’t get both good placements and

low latency for the entire workload!

Firmament provides a solution!

e Centralized architecture

e (Good task placements
e Low task scheduling latency

e Scales to 10,000+ machines

> Finds optimal task
placements

> Min-cost flow-based
centralized scheduler

Quincy: Fair
Scheduling for

Distributed
Computing Clusters

Quincy: Fair Scheduling for Distributed Computing
Clusters

Michael Isard, Vijayan Prabhakaran, Jon Currey,
Udi Wieder, Kunal Talwar and Andrew Goldberg
Microsoft Research, Silicon Valley — Mountain View, CA, USA
{misard, vijayanp, jcurrey, uwieder, kunal, goldberg}@microsoft.com

[SOSP 2009]

ABSTRACT 600

This paper addresses the problem of scheduling concurrent jobs on 2 500

clusters where application data is stored on the computing nodes. 2400

This setting, in which scheduling computations close to their data 5 00

is crucial for performance, is increasingly common and arises in 2

systems such as MapReduce, Hadoop, and Dryad as well as many E o

grid-computing environments. We argue that data-intensive com- < 10

putation benefits from a fine-grain resource sharing model that dif- 0

fers from the coarser semi-static resource allocations implemented 10 100 1000

| | bv most existine cluster computine architectures. The problem of Running timea in minutes |

@ Interactive

{Considers tasks for migration or preemption J@ Batch

@ Service
.A. ! b :

Min-cost flow scheduler

Migrate

Preempt

Machines

MMMMMM

13

Introduction to min-cost flow scheduling

‘

_‘ Cost: 7 []

Min-cost flow places tasks with minimum overall cost

Introduction to min-cost flow scheduling

Flow supply

1 Cost: 3

Introduction to min-cost flow scheduling

Flow supply

How well does
the Quincy
approach scale?

17

= 100s £ ! I | |
o0 :
E B
— 10s
e =
> e
- S B
gl I5F
O| vy E
Q| <
= 100ms | Google cluster
3 B
-g IOmS B
3
YV o0 i
> Ims
*"1 E | | | I

|
O A0 \]
S {f-’ rfDQQ AN q‘.a@ \QQQQ \rf.vQQ

Cluster size [machines]

Simulated Quincy using Google trace, 50% utilization 1o

= 100s|F T '
50 :
2 l
— 10s L
- =
J o
|5 1s L
S| = dl-
=4 ! - 66 sec on average
< 5 100ms
E
% o lomS =
2
\ gﬂ 1ms L -©-Cost scaling
d: E |] | I I

Too slow! 30% of tasks wait to be

scheduled for over 33% of their
runtime and waste resources

I_|E’| IOOS:L | | | | |
8 : o—=%
— 10s &
> :
e E
=
| o
Q| =
D b B
“[.£ 100ms
5 ;
ﬁ 10ms 3
Z 5
v ?P Ims L -©-Cost scaling
< E 1 | l |

PoPpe® @ W
Cluster size [machines]

) Goal: sub-second scheduling latency in
= common case 2

Contributions

e Low task scheduling latency

o Uses best suited min-cost flow algorithm
o Incrementally recomputes the solution

e Good task placement

o Same optimal placements as Quincy
o Customizable scheduling policies

21

scheduler

Scheduling policy

Scheduler

Task table

Task statistics

Cluster topology

Ryachine

machine

Agent

22

Specifying scheduling policies

class QuincyPolicy {

Cost_t TaskToResourceNodeCos
TaskID_t task_id)
return task_unscheduled_time *
quincy_wait_time_factor;

Defines flow graph
}

}...

23

= e
o
—
—
——

—
[e g -

scheduler

Scheduling policy Scheduler
Defines graph
Flow graph /,

scheduler

e
o
—
—
i

Scheduling policy

l Defines graph

Flow graph

l Submits graph

Min-cost,
max-flow solver

25

Scheduling policy

Task table

Task statistics

Cluster topology

Defines graph

gac ine

7/ Agent o —

t

Submits graph

Min-cost
max-flow solver

IIMOSt time T

26

Algorithm Worst-case complexity

Cost scaling O(V?Elog(VC))

Used by Quincy

E: number of arcs

V. number of nodes

U: largest arc capacity
C: largest cost value

E>V>C=U

27

Subsampled Google trace, 50% slot utilization [Quincy policy]

beftter

-

O -

Goal

100ms Y

10ms

-©-Cost scaling
L ! ! !

I ms

Avg. algorithm runtime [log (]

5‘0

W

Q Q Q Q N
e NC R SR RN X

Cluster size [machines]

=
O
7p)
O
O
|_

Cost scaling is too slow beyond 1,000 machines

28

Algorithm Worst-case complexity

Cost scaling O(V?Elog(VC))
Successive shortest path |O(V2Ulog(V))

E: number of arcs

V. number of nodes

U: largest arc capacity
C: largest cost value

E>V>C=U

29

Subsampled Google trace, 50% slot utilization [Quincy policy]

2 100s £ ' ' %
Eﬂ 10 E = ®
P i =
E : Goal] =
= 1S+ -
| F : >
S| E 100
=| E ms 'y
go 10ms
% ~/-Succ. shortest
3 I ms -©-Cost scaling
' < L | | |

Q0 . © Q N\ N\ N
e eaelo\ O A0 \QQQ \,ﬁb

Cluster size [machines]

Successive shortest path only scales to ~100 machines

Algorithm Worst-case complexity
Cost scaling O(V?Elog(VC))
Successive shortest path |O(V2Ulog(V))

Relaxation ‘ O(E°CU?)

E: number of arcs Highest
V: number of nodes complexity
U: largest arc capacity

C: largest cost value

E>V>C=U

31

beftter

«

Subsampled Google trace, 50% slot utilization [Quincy policy]

= 1005 —
%l} E f o
= 10s
O
= Goal
= Is
=
- 1
£ 100ms : '
S
Eﬂ {0 ; ——Relaxation
® = —A~Succ. shortest
g} Ims L -©-Cost scaling
! | !

O A0 .V N Q Q \]
G e OO AN \QQQ \rf)Q

Cluster s1ze [machines]

Relaxation meets our sub-second latency goal =

Why is Relaxation fast?

N .
— &,

Single-ish pass flow push

ol
T, — v
3

Relaxation is well-suited to the graph structure

Machine utilization
H O
.

high medium

34

Machine utilization
H O
.

high medium

35

Relaxation suffers in pathological edge cases

Machine utilization

90000

Relaxation cannot push flow in a single pass any more

How bad does
Relaxation’s edge
case get?

Experimental setup:
. ® Simulated 12,500 machine cluster
B ¢ Used the Quincy scheduling policy
82, o Utilization >90% to oversubscribed cluster

37

Quincy, 12,500 machines cluster, job of increasing size

NN W WA
S L O W O W
& ol s &S
T T T T 1

150 |-
100 |

better
Algorithm runtime [sec]

-
n
-

|

-

91

92 93 94 95 9 97 98 99 100

Cluster slot utilization [%]

38

Quincy, 12,500 machines cluster, job of increasing size

0 ——Relaxation

e A B A T 'S R 'S T LN &N
o U B B iy WA 3 LR
o IS ey 2 I 2 O
F 1 1 1 T 1

better
Algorithm runtime [sec]

<
N
-
I

91 92 93 94 95 96 97 98 99 100
Cluster slot utilization [%]

Quincy, 12,500 machines cluster, job of increasing size

I

450 £ I | I | I I |
—+—Relaxation

| -©-Cost scaling
350 |-

300

beftter

Algorithm runtime [sec]
()
=
=

91 92 93 94 95 9 97 98 99 100

Cluster slot utilization [%]

Cost scaling is unaffected by high utilization

40

Min-cost max-flow solver

Input graph

q
q
L B

Relaxation

Scheduling policy

Flow graph

~
~
~
~ -~
~ .

Min-cost,
max-flow solver

Output flow

41

Quincy, 12,500 machines cluster, job of increasing size

I

450 £ I | I | I | |
—+—Relaxation

| -©-Cost scaling
350

300
250

beftter

Algorithm runtime [sec]
()
>
o

91 92 93 94 95 9 97 98 99 100

Cluster slot utilization [%]

Algorithm runtime is still high at utilization > 94% ..

Input graph

Min-cost max-flow solver

-—
)
= =
— -—
- . —
. ol S
— -—
— el

Output flow

—
—
-,

Min-cost,
max-flow solver

State discarded

43

Min-cost max-flow solver

Graph changes

Cost scaling

Output flow

i -
—
—
-—
—
—
-—
—
—_—
—
—
)
—_—
=

—

Scheduling policy

11

Flow graph

Min-cost,
max-flow solver

44

Quincy, 12,500 machines cluster, job of increasing size

450 £ I | I | I | |
400 —+—Relaxation

| -©-Cost scaling
350

— —A-Incremental cost scaling
300 +

250
200
150

better
Algorithm runtime [sec]

100 o
vy 50 . — A
0 | | | | | |

91 92 93 94 95 9 97 98 99 100

Cluster slot utilization [%]

Incremental cost scaling is ~2x faster

45

Evaluation

Does Firmament choose
good placements with
low latency?

How do Firmament’s
placements compare to
other schedulers?

Experimental setup:
. ¢ Homogeneous 40-machine cluster, 10G network
B ¢ Mixed batch/service/interactive workload

47

e
LL]
—
D
a
LL]
L
O
),

Firmament chooses good placements

1.0 I I I I | I I |

< < <
~ o) o0
! | I
1 | 1

CDF of task response time
-
o
|
|

0 20 40 o0 &0 100 120 140 160

Task response time [sec|

-«
beftter

=
=

5 seconds task response time on idle cluster

Firmament chooses good placements

1.0 I | I I | ___I | -
O —r
£ 08 | y
Q 20% of tasks experience poor
=
S 06|t placement |
5
A
E 04 —
b i1
ad Ik |
= 0.2
©) E—H8 Sparrow

0.0 A | | | | | | | |

0 20 40 60 80 100 120 140 160

Task response time [sec]

-«
beftter

Sparrow is unaware of resource utilization 50

Firmament chooses good placements

1.0

=
o0

20% of tasks experience poor
placement

&
o)

<
T~

A—aA Docker SwarmKit
+—+ Kubernetes —

E—=#& Sparrow
| | | | | | | |

0 20 40 60 80 100 120 140 160

Task response time [sec]

-«
beftter

CDF of task response time
£
(g

=
(=

Centralized Kubernetes and Docker still suffer .

Firmament chooses good placements

1.0

-
oo
T

Avoided co-location interference

&
o)

<
I~

¥ Firmament =
A—A Docker SwarmKit
+——+ Kubernetes —

B—4#& Sparrow
| ! | | ! | | !

0 20 40 60 &0 100 120 140 160

Task response time [sec]

CDF of task response time
£
(g

=
o

\

Firmament outperforms centralized and
distributed schedulers 52

How well does
Firmament handle
challenging workloads?

_ Experimental setup:
B ¢ Simulated 12,500 machine Google cluster
¥4, ® Used the centralized Quincy scheduling policy

g o Utilization varies between 75% and 95%

53

Firmament handles challenging workloads at low latency

60

N
-

B
-

2
-

beftter

Median task Median task
" [runtime: 420s runtime: 1.7s |

| |

Ix 50x 100x 150x 200x 250x

Google trace acceleration

Simulate interactive workloads by
scaling down task runtimes o

b9
-

[S—
-

Task placement latency [sec]

-

Firmament handles challenging workloads at low latency

M Cost scaling (Quincy)

60 ——
3
2, D Wi
2
S 4
5| 2 I - F B
= = 30 i 0
((b) L
Q £
S 20+
= 45 seconds average latency
~ 10} |(tuned over Quincy setup’s 66s)
v E
0

Ix 50x 100x 150x 200x 250x

Average latency is too high even

without many short tasks 55

Firmament handles challenging workloads at low latency

60 Bl Cost scaling (Quincy) B Relaxation

| 1 1 I | I
|
50 | 1

40 |

30 i g

beftter

20 | i

10 + & %

T
0L s I e -T_ —
% 50x 100x 150x 200x 250x

Latency with a 250x acceleration:

Task placement latency [sec]

/5th percentile: 2 sec
maximum: 57 sec

Firmament handles challenging workloads at low latency

Bl Cost scaling (Quincy) Bl Relaxation ll Firmament
|] I 1 1 I]
| | *
T

60

N
-

N
2

o)
-
|~
t
;

beftter

o
-
»

[S—
-

*

Tal 1ol Tal 12
| eml Lokl L O LX LD
Ix 50x 100x 150x 200x 25

Google trace acceleration

Firmament’'s common-case latency is
sub-second even at 250x acceleration |~

*

Task placement latency [sec]

-

Conclusions

e Low task scheduling latency

o Uses best algorithm at all times
o Incrementally recomputes solution

e Good task placement

o Same optimal placements as Quincy
o Customizable scheduling policies

Open-source and available at:

firmament.io

58

http://firmament.io
http://firmament.io

