the
software supply chain

Filippo Valsorda
0



We all use
other people's code



The A Register’

Biting the hand that feeds IT

A/ DATA CENTRE SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE EMERGENT TECH

Software
How one developer just broke Node, T
Babel and thousands of projects in 11 1

lines of JavaScript

e e m
Failure to patch two-month-old bug led
to massive Equifax breach

t h e n p m b I O g Critical Apache Struts bug was fixed in March. In May, it bit ~143 million US consumers.

B|og about npm thlngs DAN GOODIN - SEP 14, 2017 3:12 AM UTC

Details about the event-stream incident




Three supply chain security players

1. Language — enables trust
2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust



Organization

Language

Auditing
Security practices

Vulnerability tracking

Limited trust trees

Integrity
Availability

Provenance

Ecosystem



Three supply chain security players

1. — enables trust

2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust



Three supply chain security players

1. — enables trust

1. Provenance — what code do we depend on?
2. Availability — where do we get it¢

3. Integrity — has it been tampered with?



Provenance

Trying to establish:
® a universal name

® 0 permanent version



Python: PyPi and pipenv
Rust: crates.io and cargo

Node: NPM
Ruby: rubygems.org and Bundler



Go Modules

module github.com/FiloSottile/mostly-harmless/dcbot

require (
crawshaw.1o0/sqlite v0.1.1
github.com/pkg/errors v0.8.0
github.com/sirupsen/logrus v1.2.0
golang.org/x/sync v0.0.0-20181108010431-42b317875d0f

)

go 1.14




Availability

Making sure the code is still
available in the tuture.



dl'S TECHNICA

BIZ & IT —

Rage-quit: Coder unpublished 17 lines of
JavaScript and “broke the Internet”

Dispute over module name in npm registry became giant headache for developers.

SEAN GALLAGHER - MAR 25, 2016 2:10 AM UTC



Go Module Proxies and Mirror

GOPROXY=https://proxy.golang.org

https://proxy.golang.org/
github.com/sirupsen/logrus/av/
vl.4.2.21p




Integrity

Protecting code from tampering.



No trust in proxies.
No trust in a central entity.
No trust on first use.

No key management tor authors.



The Go

Checksum Database




Solve
"is everyone looking at the same code"

as O pProxy for
"is this the right code"



$ curl https://sum.golang.org/lookup/github.com/sirupsen/logrusavl.4.?2

15937/

github.com/sirupsen/logrus vi1.4.2
h1:SPIR1bHv4MatM3XXNO2BJeFLZwZ2LvZgfQ5+UNI21m4=
github.com/sirupsen/logrus v1.4.2/go.mod
h1l:tLMulIdttU9McNUsppOxgXVQah82FyeX6MwdIUuYE2rE=

go.sum database tree
737311

a6t JmEcOB7ayb8)3fTHRrO0cZ8DMe+1NsWpp8CIMFoqY=

— sum.golang.org Az3gro/R/80qJRyMC3biFoTrXFFr+nJ6PAhkGIgnsVUbnBNA3vOPxm/
RPGUIM+ejFqe37G9IrTOz+F2hPaYMvaaYSgo=




>
.
h
O
-
C
D
O
9,
U
O
-
O
e
N
O
O,
-
-
O
Y
-
=

level 4




level 4
level 3
level 2

level 1

level 0

tile(2, 0)/1

0 1
tile(0, 0)

Tiles tor caching

tile(1, 1

2o
4/ \5

10
/\

11 12

/N |\
22 23|24 25 26

tile(0, 6)/3




The Go

A public append-only log ot module
version checksums

kept accountable by Merkle tree proofs
verified on the client
served as cacheable efficient tiles.



Three supply chain security players

1. — enables trust

1. Provenance — what code do we depend on?
2. Availability — where do we get it¢

3. Integrity — has it been tampered with?



Three supply chain security players

1. Language — enables trust
2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust



Three supply chain security players

1. Language — enables trust

2. — propagates and limits trust

3. Organization — manages and mitigates trust



lmporting a dependency delegates o
degree of frust to it and to its
tfransitive dependencies.



lmporting a dependency delegates o
degree of frust to it and to its
tfransitive dependencies.

A healthy ecosystem tights this like
technical debt.



dl'S TECHNICA

POISONING THE WELL —

Widely used open source software
contained bitcoin-stealing backdoor

Malicious code that crept into event-stream JavaScript library went undetected for weeks.

DAN GOODIN - NOV 26, 2018 10:55 PM UTC




Go proverb #8

A little copying is better
than a little dependency.



Go build dependencies

$ go list -m all
github.com/FiloSottile/mostly-harmless/dcbot
crawshaw.1o0/10x v0.0.0-20181124134642-c51c3df30797
crawshaw.1o0/sqglite v0.1.1-0.20181106130822-19c189e3c5ce
github.com/davecgh/go-spew v1.1.1
github.com/konsorten/go-windows-terminal-sequences v1.0.1
github.com/pkg/errors v0.8.0
github.com/pmezard/go-difflib v1.0.0
github.com/sirupsen/logrus v1.2.0
github.com/stretchr/objx v0.1.1
github.com/stretchr/testify v1.2.2

golang.org/x/crypto v0.0.0-20181203042331-505ab145d0a9
golang.org/x/sync v0.0.0-20181108010431-42b317875d0f
golang.org/x/sys v0.0.0-20181213200352-4d1cda033e06




Go build dependencies

$ go list -deps -f "{{if not .Standard}}{{ ImportPath}}{{end}}"
crawshaw.1o/sqlite

crawshaw.1o0/sqlite/sqliteutil

github.com/pkg/errors

golang.org/x/sys/unix

golang.org/x/crypto/ssh/terminal

github.com/sirupsen/logrus
github.com/sirupsen/logrus/hooks/syslog
golang.org/x/sync/errgroup
github.com/FiloSottile/mostly-harmless/dcbot




Three supply chain security players

1. Language — enables trust
2. Ecosystem — propagates and limits trust

3. [@]felelalr4elile]lsl — Mmanages and mitigates trust



Three supply chain security players

3. — manages and mitigates trust

1. Vulnerability tracking — past vulnerabilities
2. Security practices — tuture vulnerabilities

3. Auditing — current vulnerabilities



Vulnerability tracking

|[dentity and patch public
vulnerabilities.



dl'S TECHNICA

BIZ & IT —

Failure to patch two-month-old bug led
to massive Equifax breach

Critical Apache Struts bug was fixed in March. In May, it bit ~143 million US consumers.

DAN GOODIN - SEP 14, 2017 3:12 AM UTC



Security practices

How are new vulnerabilities
going to get introduced,
discovered, and handled?



Tests, fuzzing and Cl
Security reporting
Maintenance status

Sustainability



pkg.go.dev

-GO

Search for a package



Auditing

Actively looking for malicious
code and vulnerabilities.



Organization

Language

Auditing
Security practices

Vulnerability tracking

Limited trust trees

Integrity
Availability

Provenance

Ecosystem



Questions?

The Go Checksum Database
https://golang.org/design/25530-sumdb

"Our Sottware Dependency Problem" by Russ Cox

hitps://research.swich.com/deps

Filippo Valsorda, Google
@FiloSottile — tilippo@golang.org


mailto:filippo@golang.org
https://golang.org/design/25530-sumdb
https://research.swtch.com/deps

