
Securing the
software supply chain

Filippo Valsorda

We all use
other people's code

Three supply chain security players

1. Language — enables trust

2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust

Provenance

Availability

Vulnerability tracking

Security practices

Auditing

Language

Ecosystem

Organization

Integrity

Limited trust trees

Three supply chain security players

1. Language — enables trust

2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust

Three supply chain security players

1. Language — enables trust

1. Provenance — what code do we depend on?

2. Availability — where do we get it?

3. Integrity — has it been tampered with?

Provenance
Trying to establish:

• a universal name

• a permanent version

Python: PyPi and pipenv

Rust: crates.io and cargo

Node: NPM

Ruby: rubygems.org and Bundler

Go Modules

module github.com/FiloSottile/mostly-harmless/dcbot

require (
 crawshaw.io/sqlite v0.1.1
 github.com/pkg/errors v0.8.0
 github.com/sirupsen/logrus v1.2.0
 golang.org/x/sync v0.0.0-20181108010431-42b317875d0f
)

go 1.14

Availability
Making sure the code is still
available in the future.

Go Module Proxies and Mirror

GOPROXY=https:"//proxy.golang.org

https:"//proxy.golang.org/
github.com/sirupsen/logrus/@v/
v1.4.2.zip

Integrity
Protecting code from tampering.

No trust in proxies.

No trust in a central entity.

No trust on first use.

No key management for authors.

The Go
Checksum Database

Solve
"is everyone looking at the same code"

as a proxy for
"is this the right code"

$ curl https:"//sum.golang.org/lookup/github.com/sirupsen/logrus@v1.4.2

15937
github.com/sirupsen/logrus v1.4.2
h1:SPIRibHv4MatM3XXNO2BJeFLZwZ2LvZgfQ5+UNI2im4=
github.com/sirupsen/logrus v1.4.2/go.mod
h1:tLMulIdttU9McNUspp0xgXVQah82FyeX6MwdIuYE2rE=

go.sum database tree
737311
a6tjmEcOB7ayb8j3fTHRrOcZ8DMe+iNsWpp8CJMFoqY=

— sum.golang.org Az3gro/R/8oqJRyMC3biFoTrXFFr+nJ6PAhkGIqnsVUbnBNA3vOPxm/
RPGUIm+ejFqe37G9IrT0z+F2hPaYMvaaYSgo=

Merkle trees for accountability

Tiles for caching

The Go Checksum Database

• A public append-only log of module
version checksums

• kept accountable by Merkle tree proofs
verified on the client

• served as cacheable efficient tiles.

Three supply chain security players

1. Language — enables trust

1. Provenance — what code do we depend on?

2. Availability — where do we get it?

3. Integrity — has it been tampered with?

Three supply chain security players

1. Language — enables trust

2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust

Three supply chain security players

1. Language — enables trust

2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust

Importing a dependency delegates a
degree of trust to it and to its

transitive dependencies.

Importing a dependency delegates a
degree of trust to it and to its

transitive dependencies.

A healthy ecosystem fights this like
technical debt.

Go proverb #8

A little copying is better
than a little dependency.

Go build dependencies

$ go list -m all
github.com/FiloSottile/mostly-harmless/dcbot
crawshaw.io/iox v0.0.0-20181124134642-c51c3df30797
crawshaw.io/sqlite v0.1.1-0.20181106130822-19c189e3c5ce
github.com/davecgh/go-spew v1.1.1
github.com/konsorten/go-windows-terminal-sequences v1.0.1
github.com/pkg/errors v0.8.0
github.com/pmezard/go-difflib v1.0.0
github.com/sirupsen/logrus v1.2.0
github.com/stretchr/objx v0.1.1
github.com/stretchr/testify v1.2.2
golang.org/x/crypto v0.0.0-20181203042331-505ab145d0a9
golang.org/x/sync v0.0.0-20181108010431-42b317875d0f
golang.org/x/sys v0.0.0-20181213200352-4d1cda033e06

Go build dependencies

$ go list -deps -f "{{if not .Standard}}{{•ImportPath}}{{end}}"
crawshaw.io/sqlite
crawshaw.io/sqlite/sqliteutil
github.com/pkg/errors
golang.org/x/sys/unix
golang.org/x/crypto/ssh/terminal
github.com/sirupsen/logrus
github.com/sirupsen/logrus/hooks/syslog
golang.org/x/sync/errgroup
github.com/FiloSottile/mostly-harmless/dcbot

Three supply chain security players

1. Language — enables trust

2. Ecosystem — propagates and limits trust

3. Organization — manages and mitigates trust

Three supply chain security players

3. Organization — manages and mitigates trust

1. Vulnerability tracking — past vulnerabilities

2. Security practices — future vulnerabilities

3. Auditing — current vulnerabilities

Vulnerability tracking
Identify and patch public
vulnerabilities.

Security practices
How are new vulnerabilities
going to get introduced,
discovered, and handled?

Tests, fuzzing and CI

Security reporting

Maintenance status

Sustainability

pkg.go.dev

Auditing
Actively looking for malicious
code and vulnerabilities.

Provenance

Availability

Vulnerability tracking

Security practices

Auditing

Language

Ecosystem

Organization

Integrity

Limited trust trees

Questions?

Filippo Valsorda, Google
@FiloSottile — filippo@golang.org

The Go Checksum Database
https://golang.org/design/25530-sumdb

"Our Software Dependency Problem" by Russ Cox
https://research.swtch.com/deps

mailto:filippo@golang.org
https://golang.org/design/25530-sumdb
https://research.swtch.com/deps

