
SOTER:Guarding Black-box Inference for General
Neural Networks at the Edge

Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao,
Sen Wang, Li Chen, Xiapu Luo, Fengwei Zhang, Heming Cui

The University of Hong Kong Huawei Technologies The Hong Kong
Polytechnic University

Southern University of
Science and Technology

Background: Edge-side DNN Inference
Ø Giant companies (e.g., Google) provide well-trained Deep Learning (DL) models to clients

1

Autonomous Driving Home Monitoring Virtual Assistance Speech Recognition

• Giant companies pay substantial effort to train accurate models

…

…

Ø To provide high-quality (low-latency) services, DNN models are usually deployed on edge-side user devices

• Clients (i.e., users) run edge-side DNN inference to get real-time results

• However,

Ø In sum, edge-side inference requires low latency, high accuracy with confidentiality and integrity protection

• DL models, especially Deep Neural Networks (DNN), serve numerous mission-critical AI applications

sensitive model parameters are exposed, and inference can be easily interfered at the untrusted edge!

, which are private

Background: Trusted CPU TEE & Untrusted GPU
Ø Trusted Execution Environment (TEE) is promising to protect model confidentiality

• TEEs are widely used to protect edge services

• GPU is essential: Numerous edge devices have been integrated with GPU to accelerate edge intelligence

Ø Edge-side TEEs are trusted, but edge-side GPUs are untrusted

n E.g., Samsung uses TrustZone to store payment information; Trustonic uses TEE to build IoT apps with trusted-UI

• TEEs (e.g., Intel SGX, ARM TrustZone) provides data confidentiality and code integrity guarantees

2

n E.g., Apple’s A15 chip equips 4-core GPU; Samsung’s new mobile processor Exynos2200 includes AMD GPU

• CPU TEE does not support GPU, model providers cannot trust third-party GPUs

n Current Trusted GPUs either require extensive hardware modifications or support only hardware simulators

• TEE-based inference systems are emerging (more details in page 4-5)

Requirements for Edge-side DNN Inference

Ø An ideal edge-side inference system should meet the following requirements:

Ø Deployment scenario

3

• Model confidentiality: model parameters’ plaintexts should be hidden

• High accuracy: retain the same accuracy as the original model

• Low latency: utilize co-located GPU accelerator to speed up model inference
Performance

Security
• Inference integrity: any attacks (e.g., malicious modifications) on inference results should be detected

4

Prior work: TEE-shielding Approach
Ø Existing TEE-based inference systems include TEE-shielding approach and partition-based approach

• How it works

Ø TEE-shielding approach (e.g., MLCapsule [CVPR ’21])

• Advantages: Protect model confidentiality and inference integrity; Retain high accuracy

• Limitations: No GPU acceleration with extremely high inference latency (up to 36.1X) than insecure GPU inference

1. Attest to the TEE-equipped edge device

3. Take client input to run inference purely inside the CPU TEE

2. Offload and decrypt the encrypted model in an attested TEE enclave

4. Return the inference result back to the client

1. attest3. query

4. result

5

Prior work: Partition-based Approach

• How it works

Ø Partition-based approach (e.g., AegisDNN [RTSS ’21], eNNclave [AISec ’20])

• Advantages: Low latency with GPU acceleration

• Limitations: Incur either confidentiality loss or accuracy loss; Integrity breaches on partitioned model

Confidentiality-Accuracy dilemma!

Integrity breaches!

Sensitive segments -> trusted-but-slow CPU TEE
Insensitive segments (with plaintext or retrained parameters) -> untrusted-but-fast GPU

1. attest & offload

2. Partition Strategy

IR

IR

…

3. query

4. result

6

Goals of Our Solution: SOTER

• Accelerate heavy-weight computation with GPU and retain high accuracy as the original model

Ø SOTER is a partition-based inference system that achieves all desired properties for edge-side DNN inference

• Protect model confidentiality by hiding all parameters’ plaintexts

• Detect integrity breaches (e.g., malicious modifications) on inference results

GPU Acceleration No Accuracy Loss Model Confidentiality Inference Integrity

MLCapsule

eNNclave

AegisDNN

SOTER

Ø To achieve these goals, SOTER asks two questions:

• Q1: How can we utilize untrusted GPU for acceleration without sacrificing confidentiality or accuracy?

• Q2: How to efficiently detect integrity breaches outside the TEE?

7

Recap DNN Model Architecture
Ø Recap DNN model architecture

Ø Associativity of common DNN operators: (μ^-1 * μ) F(X) = μ^-1 F(μ X)

• All linear operators (e.g., Conv, FC) satisfy associativity property and they represent a major fraction of model computation

• Some non-linear operators (e.g., ReLU) are scale-invariant and satisfy this property under specific constraints

• E.g., ReLU: F(x) = Max{0, X} is scale-invariant when μ > 0, i.e., F(μx) = Max{0, μX} = μF(X)

Bridging the Confidentiality-Accuracy Gap (Q1)

Ø SOTER’s key weapon: the general associativity property of common inference operators

8

• Step 1: Automatically profile an encrypted model in TEE

Ø Major workflow

• Step 2: Morph a portion of associative operators’ parameters with hidden scalars

(μ^-1 * μ) F(X) = μ^-1 F(μ X)sensitive!

sensitive -> TEE

insensitive -> GPU

• Step 3: Partition morphed operators to run on GPU

Ø Confidentiality-accuracy dilemma

• Step 4: Execute operators in order, transmit IRs between kernels, restore execution results with hidden scalars in TEE

9

• If we use fixed TF, the adversary can easily observe and bypass the TF detection

Ø Partition-based system inevitably open access to integrity breaches outside the TEE

Detecting Integrity Breaches (Q2)

Ø Detect integrity breaches: a straw man Trusted Fingerprint (TF) re-computing approach

Ø Key challenge: Obliviousness-timeliness dilemma

• If generate new TF as regular user input in CPU TEE, TFs become oblivious to observe, but TF generation (in CPU TEE)
becomes the performance bottleneck, leading to slow detection

Ø SOTER solves the challenge using the same associativity observation from confidentiality protection

• Associativity variant: If F(X1) = Y1; F(X2)=Y2; …; F(Xn)=Yn, then F(μ1X1+ μ2X2+…+ μnXn)= μ1Y1+ μ2Y2+…+ μnYn

Step 1:
Prepare cornerstone TFs in
the preprocessing phase

Step 2:
Generate new scalars and use the
associativity variant to efficiently
produce new TFs

10

Ø By using the same associativity weapon,
three key modules run in two phases to
collectively provide low latency, high accuracy,
model confidentiality, and integrity protection

SOTER: In a Nutshell
SOTER Profiler

Ø The Profiler and Inference Manager module
speeds up model inference with untrusted
GPU while protecting parameters’ plaintexts

• Hide partitioned operators’ parameters with
secret blinding coins

• Automatically profile and formulate partition plans

Ø The Integrity Monitor module check partitioned GPU operators’
execution results to detect any integrity breaches

• Top-W operator reserving
• Efficiently generate new trusted fingerprints at runtime for obliviousness

SOTER Inference Manager

SOTER Integrity Monitor

SOTER architecture

Implementation and Evaluation
Ø Implementation Details

• MLCapsule [CVPR ’21]

• Implemented on PyTorch and Graphene-SGX, extensible to any imperative Deep Learning frameworks and TEE codebase

11

• Designed a Morph-Then-Restore protocol for cooperative executions between kernels (TEE & GPU)
• Adopted a two-phase design for offline preprocessing and online inference

• Designed a periodical upgrading mechanism to prevent chosen plaintext attacks
• Designed an on-demand operator prefetching mechanism to reduce TEE memory footprints

Ø Baseline secure inference systems

• AegisDNN [RTSS ’21]

• eNNclave [AISec ’20]

(The above blue optimization is also incorporated in the three baselines)

• Evaluated on VGG19, Alexnet, Resnet152, Densenet121, Multi Layer Perception, and Transformer

Ø Evaluation settings in our dedicated cluster

• A GPU farm with Nvidia 2080Ti GPUs, each GPU had 11GB physical memory

• Dell R430 server with 2.60GHZ Intel E3-1280 V6 CPU, 64GB memory, and SGX hardware support

Evaluation Questions

12

Ø How is SOTER’s end-to-end performance compared to baselines?

Ø How is SOTER’s confidentiality protection compared to baselines?

Ø Are SOTER’s trusted fingerprint oblivious to the adversary outside the TEE?

Ø How sensitive is SOTER’s performance to different partition ratio?

End-to-end performance

13

Ø Figure 1 shows the inference latency (normalized to insecure
GPU inference, red dotted line) compared to three baselines
(SOTA TEE-shielding and partition-based approach) running six
prevalent DNN models

����

�,

��,

��,

	�,

�
%
'
#
�"
�
)
�
$
�
-

	
���

����� �� !(��� ����"�+� ����&(*"�

���

�"�,$�)

�,

�,

��,

��,

��

���

��($�)���

�,

��,

��,

��,

�
%
'
#
�"
�
)
�
$
�
-

�
��
�

���

��$(�$�)���

�,

	,

�,

,

�����

���

���

�,

��,

��,

�	,

�
%
'
#
�"
�
)
�
$
�
- ���

���

�'�$(�%'#�'

�,

��,

	�,

�,

�
���	

Figure 1

• SOTER achieved 1.21X ∼ 4.29X lower inference latency than TEE-
shielding MLCapsule

• SOTER enforced integrity protection, with only 1.03X ∼ 1.27X higher
inference latency than partition-based AegisDNN

Security Evaluation

14

Ø (Confidentiality) Even if SOTER completely hides partitioned
operators’ plaintexts, an adversary may still conduct model
stealing attacks to train a substitute model (SM)

Figure 2.a (on VGG19)

• SOTER’s fingerprints are oblivious to the adversary because
the L2 distance distribution of fingerprints shares the same form
of normal distribution as client’s normal query input

��� ��� ��� ��	 ��
 ���

�����$�&����"$�$� ����$�

��

��

�	

�

��

��

��

�	

�

�
�
�
�
�#
�

"
�

����#���

�����

��
�!#%��

��� ��� ��� ��
 ��� ���

�����$�&����"$�$� ����$�

��	

��

���

���

�
�
%
"
�
�
'

������&�

���#���

�����

����!#%��

Figure 2.b (on Transformer)

� 	�
� �� ��
��������

���
���
��

	�

��
��

��
���

��
��

� 	��	
������

� �� 	�
� ��
��������

�
�
	

��
��

��
���

��
��

� ����

����

Figure 3.a (w oblivious TF) Figure 3.b (w/o oblivious TF)

• SOTER achieved the same strong confidentiality protection
as eNNclave while eNNclave sacrifices inference accuracy

• SOTER achieved stronger confidentiality protection than
AegisDNN

(A higher accuracy/BLEU of SM means more confidentiality loss)

Ø (Integrity) Compare SOTER’s oblivious trusted fingerprint
(Figure 3.a) with the straw man fixed trusted fingerprint
approach (Figure 3.b)

15

Ø In this paper, we present SOTER, the first work that achieves model confidentiality, low-latency and high-accuracy
with integrity protection for general neural network inference

• Comparable strong confidentiality as TEE-shielding approach; Comparable low latency as partition-based approach; High
accuracy same as insecure GPU inference; Overwhelming high probability of obliviously detecting integrity breaches

Conclusion

Ø These features encourage giant companies to develop powerful models and deploy them on third-party edge devices

Ø SOTER can also help with protecting models on untrusted cloud servers

Ø SOTER’s artifact is available at https://github.com/hku-systems/SOTER

Ø SOTER’s future work is broad:

• SOTER can integrate with emerging black-box defenses to further strengthen privacy guarantees

• SOTER can be extended to multiple GPUs and TEEs for distributed model inference

https://github.com/hku-systems/SOTER

