
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Tiling a Rectangle with the Fewest Squares in C++
Suppose we have a rectangle of size n x m. We have to find the minimum number of integers sided square objects that can tile the rectangles.
So, if the input is like n = 2 and m = 3,
then the output will be 3, as we need three blocks.
To solve this, we will follow these steps −
Define one map m
res := inf
Define a function dfs(), this will take n, m, an array h, cnt,
-
if cnt >= res, then −
return
isFull := true
pos := -1, minH := inf
-
for initialize i := 1, when i <= n, update (increase i by 1), do −
-
if h[i] < m, then −
isFull := false
-
if h[i] < minH, then −
minH := h[i]
pos := i
-
-
if isFull is non-zero, then −
res := minimum of res and cnt
return
key := 0
base := m + 1
-
for initialize i := 1, when i <= n, update (increase i by 1), do −
key := key + h[i] * base
base := base * (m + 1)
-
if key is in s and s[key] <= cnt, then −
return
s[key] := cnt
end := pos
while (end + 1 <= n and h[end + 1] is same as h[pos] and (end + 1 - pos + 1 + minH)
-
<= m), do −
(increase end by 1)
-
for initialize j := end, when j >= pos, update (decrease j by 1), do −
curH := j - pos + 1
Define an array next of size n + 1
-
for initialize i := 1, when i <= n, update (increase i by 1), do −
next[i] := h[i]
-
for initialize k := pos, when k <= j, update (increase k by 1), do −
next[k] := next[k] + curH
dfs(n, m, next, cnt + 1)
From the main method do the following −
-
if n is same as m, then −
return 1
-
if n > m, then
swap(n, m)
Define an array h of size n + 1
dfs(n, m, h, 0)
return res
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; class Solution { public: map<int, int> s; int res = INT_MAX; void dfs(int n, int m, vector<int> h, int cnt){ if (cnt >= res) return; bool isFull = true; int pos = -1, minH = INT_MAX; for (int i = 1; i <= n; i++) { if (h[i] < m) isFull = false; if (h[i] < minH) { minH = h[i]; pos = i; } } if (isFull) { res = min(res, cnt); return; } long key = 0; long base = m + 1; for (int i = 1; i <= n; i++) { key += h[i] * base; base *= m + 1; } if (s.find(key) != s.end() && s[key] <= cnt) return; s[key] = cnt; int end = pos; while (end + 1 <= n && h[end + 1] == h[pos] && (end + 1 - pos + 1 + minH) <= m) end++; for (int j = end; j >= pos; j--) { int curH = j - pos + 1; vector<int> next(n + 1); for (int i = 1; i <= n; i++) next[i] = h[i]; for (int k = pos; k <= j; k++) { next[k] += curH; } dfs(n, m, next, cnt + 1); } } int tilingRectangle(int n, int m){ if (n == m) return 1; if (n > m) swap(n, m); vector<int> h(n + 1); dfs(n, m, h, 0); return res; } }; main(){ Solution ob; cout << (ob.tilingRectangle(2, 3)); }
Input
2,3
Output
3