
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the Identity Array in NumPy
To return the identity array, use the numpy.identity() method in Python Numpy. The identity array is a square array with ones on the main diagonal. The 1s parameter is the number of rows (and columns) in n x n output. The function returns n x n array with its main diagonal set to one, and all other elements 0.
The like parameter is a reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
Steps
At first, import the required library −
import numpy as np
Create a 2d array. To return the identity array, use the numpy.identity() method in Python Numpy. The identity array is a square array with ones on the main diagonal. The 1s parameter is the number of rows (and columns) in n x n output −
arr = np.identity(4)
Display the array −
print("Array...
", arr)
Get the type of the array −
print("
Array type...
", arr.dtype)
Get the shape of the array −
print("
Array shape...
", arr.shape)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Get the number of elements in the Array −
print("
Array (count of elements)...
",arr.size)
Example
import numpy as np # Create a 2d array # To return the identity array, use the numpy.identity() method in Python Numpy # The identity array is a square array with ones on the main diagonal. # The 1s parameter is the number of rows (and columns) in n x n output arr = np.identity(4) # Display the array print("Array...
", arr) # Get the type of the array print("
Array type...
", arr.dtype) # Get the shape of the array print("
Array shape...
", arr.shape) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Get the number of elements of the Array print("
Array (count of elements)...
",arr.size)
Output
Array... [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] Array type... float64 Array shape... (4, 4) Array Dimensions... 2 Array (count of elements)... 16