
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return Non-Masked Data as a 1-D Array in NumPy
To return all the non-masked data as a 1-D array, use the ma.MaskedArray.compressed() method in Numpy. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
The numpy.ma.MaskedArray is a subclass of ndarray designed to manipulate numerical arrays with missing data. An instance of MaskedArray can be thought as the combination of several elements:
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[35, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
Return all the non-masked data as a 1-D array, use the ma.MaskedArray.compressed() method in Numpy −
print("
Return Value...
",maskArr.compressed())
Example
# Python ma.MaskedArray - Return all the non-masked data as a 1-D array import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[35, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return all the non-masked data as a 1-D array, use the ma.MaskedArray.compressed() method in Numpy print("
Return Value...
",maskArr.compressed())
Output
Array... [[35 85 45] [67 33 59]] Array type... int64 Array Dimensions... 2 Our Masked Array [[35 85 --] [67 -- 59]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Return Value... [35 85 67 59]