
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
View of Masked Array with Interchanged Axes in NumPy
To return a view of the array with axis1 and axis2 interchanged, use the ma.MaskedArray.swapaxes() method in Numpy.
For NumPy >= 1.10.0, if a is an ndarray, then a view of a is returned; otherwise a new array is created. For earlier NumPy versions a view of a is returned only if the order of the axes is changed, otherwise the input array is returned.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
Return a view of the array with axis1 and axis2 interchanged, use the ma.MaskedArray.swapaxes() method −
print("
Result...
",np.swapaxes(maskArr, 0 , 1))
Example
# Python ma.MaskedArray - Return a view of the array with axis1 and axis2 interchanged import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[[15], [30], [45]]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return a view of the array with axis1 and axis2 interchanged, use the ma.MaskedArray.swapaxes() method in Numpy print("
Result...
",np.swapaxes(maskArr, 0 , 1))
Output
Array... [[[15] [30] [45]]] Array type... int64 Array Dimensions... 3 Our Masked Array [[[15] [--] [45]]] Our Masked Array type... int64 Our Masked Array Dimensions... 3 Our Masked Array Shape... (1, 3, 1) Elements in the Masked Array... 3 Result... [[[15]] [[--]] [[45]]]