
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compute Error Function of a Tensor in PyTorch
To compute the error function of a tensor, we use the torch.special.erf() method. It returns a new tensor with computed error function. It accepts torch tensor of any dimension. It is also known as Gauss error function
Steps
We could use the following steps to compute the error function of a tensor element-wise −
Import the required library. In all the following examples, the required Python library is torch. Make sure you have already installed it.
import torch
Define a torch tensor. Here we define a 2D tensor of random numbers.
tensor = torch.randn(2,3,3)
Compute the error function of the above-defined tensor using torch.special.erf(tensor). Optionally assign this value to a new variable.
err = torch.special.erf(tensor)
Print the computed error function.
print("Entropy:", err)
Example 1
In this example, we compute the error function of a 1D tensor.
# import necessary libraries import torch # define a 1D tensor tensor1 = torch.tensor([-1,2,3,4,5]) # print above created tensor print("Tensor:", tensor1) # compute the error function of the tensor err = torch.special.erf(tensor1) # Display the computed error function print("Error :", err)
Output
Tensor: tensor([-1.0000, 1.0000, 3.0000, 0.0000, 0.5000]) Error : tensor([-0.8427, 0.8427, 1.0000, 0.0000, 0.5205])
Example 2
In this example, we compute the error function of a 2D tensor
# import necessary libraries import torch # define a tensor of random numbers tensor1 = torch.randn(2,3,3) # print above created tensor print("Tensor:
", tensor1) # compute the error function of the tensor err = torch.special.erf(tensor1) # Display the computed error function print("Error:
", err)
Output
Tensor: tensor([[[-1.0724, 0.3955, -0.3472], [-0.7336, -0.8110, 1.2624], [ 0.2334, -0.9200, -0.9879]], [[ 0.8636, 0.3452, -0.4742], [-0.6868, 0.8436, -0.4195], [ 1.0410, -0.4681, 1.6284]]]) Error: tensor([[[-0.8706, 0.4241, -0.3766], [-0.7005, -0.7486, 0.9258], [ 0.2586, -0.8068, -0.8376]], [[ 0.7780, 0.3746, -0.4975], [-0.6686, 0.7671, -0.4470], [ 0.8590, -0.4921, 0.9787]]])