
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Remove Missing NaN Values in DataFrame using Python
To remove the missing values i.e. the NaN values, use the dropna() method. At first, let us import the required library −
import pandas as pd
Read the CSV and create a DataFrame −
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")
Use the dropna() to remove the missing values. NaN will get displayed for missing values after dropna() is used −
dataFrame.dropna()
Example
Following is the complete code
import pandas as pd # reading csv file dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv") print("DataFrame with some NaN (missing) values...\n",dataFrame) # count the rows and columns in a DataFrame print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape) # drop the missing values print("\nDataFrame after removing NaN values...\n",dataFrame.dropna())
Output
This will produce the following output −
DataFrame with some NaN (missing) values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai NaN 2 RollsRoyce Pune 100.0 3 BMW Delhi NaN 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and colums in our DataFrame = (9, 3) DataFrame after removing NaN values ... Car Place UnitsSold 0 Audi Bangalore 80.0 2 RollsRoyce Pune 100.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0
Advertisements