
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Ceil and Floor Methods in PyTorch
A ceiling value of a number is the smallest integer greater than or equal to the number. To find the ceiling of the elements of a torch tensor, we use the torch.ceil() function. This function takes a torch tensor as input parameter and returns a torch tensor with the ceil values of each element of the input tensor. This function supports only real-valued inputs. It supports torch tensors of any dimension.
A floor value of a number is the largest integer less than or equal to the number. To find the floor of the elements of a torch tensor, we use the torch.floor() function. This function takes a torch tensor as input parameter and returns a torch tensor with the floor values of each element of the input tensor. This function supports only real-valued input and it can support torch tensors of any dimension.
Syntax
torch.ceil(input) torch.floor(input)
Parameters
input - It's the input tensor.
Output
It returns a tensor of ceil or floor of elements of input tensor.
Steps
You could use the following steps to find the tensor with ceil or floor of elements of an input tensor
Import the required library. In all the following examples, the required Python library is torch. Make sure you have already installed it.
import torch
Create a torch tensor and print the tensor.
T = torch.tensor([1, 2.3, .2, 0, 4.01, 4.5, 4.99]) print("Tensor:
", T)
Compute torch.ceil(input) or torch.floor(input) to find the tensor with ceil or floor of the elements of input and print the computed value
print("Tensor with ceil values:
",torch.ceil(T)) print("Tensor with floor values:
",torch.floor(T))
Example 1
In the following Python code, we compute the ceiling and floor values of the elements of a torch tensor. We have taken all the elements of the tensor as positive numbers.
# Import the required library import torch # define a torch tensor T = torch.tensor([1, 2.3, .2, 0, 4.01, 4.5, 4.99]) print("Tensor:
", T) print("Tensor with ceil values:
",torch.ceil(T)) print("Tensor with floor values:
",torch.floor(T))
Output
Tensor: tensor([1.0000, 2.3000, 0.2000, 0.0000, 4.0100, 4.5000, 4.9900]) Tensor with ceil values: tensor([1., 3., 1., 0., 5., 5., 5.]) Tensor with floor values: tensor([1., 2., 0., 0., 4., 4., 4.])
Example 2
The following Python program shows how to find the ceiling and floor of the elements of a tensor. Some elements are negative. Notice how the ceiling and floor values of negative numbers are computed.
# Import the required library import torch T = torch.tensor([-1, -2.3, .2, 0, -4.01, 4.5, -4.99]) print("Tensor:
", T) print("Tensor with ceil values:
",torch.ceil(T)) print("Tensor with floor values:
",torch.floor(T))
Output
Tensor: tensor([-1.0000, -2.3000, 0.2000, 0.0000, -4.0100, 4.5000, -4.9900]) Tensor with ceil values: tensor([-1., -2., 1., 0., -4., 5., -4.]) Tensor with floor values: tensor([-1., -3., 0., 0., -5., 4., -5.])
Example 3
In the following Python code, the input is a two-dimensional tensor. It computes the ceiling and floor of each element of the tensor
# Import the required library import torch T = torch.randn(4,3) print("Tensor:
", T) print("Tensor with ceil values:
",torch.ceil(T)) print("Tensor with floor values:
",torch.floor(T))
Output
Tensor: tensor([[-0.4304, -0.5405, -0.7153], [ 0.8230, -0.0368, -0.0357], [-1.3842, 0.2168, -0.0332], [ 0.3007, 0.2878, 0.1758]]) Tensor with ceil values: tensor([[-0., -0., -0.], [ 1., -0., -0.], [-1., 1., -0.], [ 1., 1., 1.]]) Tensor with floor values: tensor([[-1., -1., -1.], [ 0., -1., -1.], [-2., 0., -1.], [ 0., 0., 0.]])