
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Select Rows from DataFrame by Integer Location in Python Pandas
To select rows by integer location, use the iloc() function. Mention the index number of the row you want to select.
Create a DataFrame −
dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35]],index=['x', 'y', 'z'],columns=['a', 'b'])
Select rows with integer location using iloc() −
dataFrame.iloc[1]
Example
Following is the code −
import pandas as pd # Create DataFrame dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35]],index=['x', 'y', 'z'],columns=['a', 'b']) # DataFrame print"DataFrame...\n",dataFrame # select rows with loc print"\nSelect rows by passing label..." print(dataFrame.loc['z']) # select rows with integer location using iloc print"\nSelect rows by passing integer location..." print(dataFrame.iloc[1])
Output
This will produce the following output −
DataFrame... a b x 10 15 y 20 25 z 30 35 Select rows by passing label... a 30 b 35 Name: z, dtype: int64 Select rows by passing integer location... a 20 b 25 Name: y, dtype: int64
Advertisements