Select Multiple Rows from a DataFrame in Python Pandas



To select multiple rows from a DataFrame, set the range using the : operator. At first, import the require pandas library with alias −

import pandas as pd

Now, create a new Pandas DataFrame −

dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35], [40, 45]],index=['w', 'x', 'y', 'z'],columns=['a', 'b'])

Select multiple rows using the : operator −

dataFrame[0:2]

Example

Following is the code −

Open Compiler
import pandas as pd # Create DataFrame dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35], [40, 45]],index=['w', 'x', 'y', 'z'],columns=['a', 'b']) # DataFrame print"DataFrame...\n",dataFrame # select rows with loc print"\nSelect rows by passing label..." print(dataFrame.loc['z']) # select rows with integer location using iloc print"\nSelect rows by passing integer location..." print(dataFrame.iloc[1]) # selecting multiple rows print"\nSelect multiple rows..." print(dataFrame[0:2])

Output

This will produce the following output −

DataFrame...
     a    b
w   10   15
x   20   25
y   30   35
z   40   45

Select rows by passing label...
a   40
b   45
Name: z, dtype: int64

Select rows by passing integer location...
a   20
b   25
Name: x, dtype: int64

Select multiple rows...
     a    b
w   10   15
x   20   25
Updated on: 2021-09-14T15:14:34+05:30

3K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements