
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Select DataFrame Rows Based on Conditions in Python Pandas
We can set conditions and fetch DataFrame rows. These conditions can be set using logical operators and even relational operators.
At first, import the required pandas libraries −
import pandas as pd
Let us create a DataFrame and read our CSV file −
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesRecords.csv")
Fetching dataframe rows with registration price less than 1000. We are using relational operator for this −
dataFrame[dataFrame.Reg_Price < 1000]
Example
Following is the code −
import pandas as pd # reading csv file dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesRecords.csv") print("DataFrame...\n",dataFrame) # count the rows and columns in a DataFrame print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape) # fetching dataframe rows with registration price less than 1000 resData = dataFrame[dataFrame.Reg_Price < 1000] print("DataFrame...\n",resData)
Output
This will produce the following output −
DataFrame... Car Date_of_Purchase Reg_Price 0 BMW 10/10/2020 1000 1 Lexus 10/12/2020 750 2 Audi 10/17/2020 750 3 Jaguar 10/16/2020 1500 4 Mustang 10/19/2020 1100 5 Lamborghini 10/22/2020 1000 Number of rows and column in our DataFrame = (6, 3) DataFrame... Car Date_of_Purchase Reg_Price 1 Lexus 10/12/2020 750 2 Audi 10/17/2020 750
Advertisements