
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find Maximum Adjacent Absolute Value Sum After Single Reversal in C++
Suppose we have a list of numbers called nums and we can reverse any sublist in the list at most once. After performing this operation, we have to find the maximum possible value of
$\displaystyle\sum\limits_{i=0}^{n-2}| nums[i+1]-[nums[i]|$
So, if the input is like nums = [2, 4, 6], then the output will be 6, as when we reverse [4, 6] we will get the list as [2, 6, 4] and the value |2 − 6| + |6 − 4| = 6
To solve this, we will follow these steps −
-
if size of nums <= 1, then −
return 0
ans := 0
n := size of nums
-
for initialize i := 1, when i < n, update (increase i by 1), do −
ans := ans + |nums[i] − nums[i − 1]|
orig := ans
-
for initialize i := 1, when i < n − 1, update (increase i by 1), do −
ans := maximum of ans and orig − |(nums[i] − nums[i + 1]| + |nums[0] − nums[i + 1]|
ans := maximum of ans and orig − |(nums[i] − nums[i − 1]| + |nums[n − 1] − nums[i − 1]|
pp := −|nums[1] − nums[0]|
pm := −|nums[1] − nums[0]|
mp := −|nums[1] − nums[0]|
mm := −|nums[1] − nums[0]|
-
for initialize j := 2, when j < n − 1, update (increase j by 1), do −
jerror := |nums[j + 1] − nums[j]|
ans := maximum of ans and (orig + pp − jerror − nums[j] − nums[j + 1])
ans := maximum of ans and (orig + pm − jerror − nums[j] + nums[j + 1])
ans := maximum of ans and (orig + mp − jerror + nums[j] − nums[j + 1])
ans := maximum of ans and (orig + mm − jerror + nums[j] + nums[j + 1])
pp := maximum of pp and −|nums[j] − nums[j − 1]|
pm := maximum of pm and −|nums[j] − nums[j − 1]|
mp := maximum of mp and −|nums[j] − nums[j − 1]|
mm := maximum of mm and −|nums[j] − nums[j − 1]|
return ans
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; int solve(vector<int>& nums) { if (nums.size() <= 1) return 0; int ans = 0; int n = nums.size(); for (int i = 1; i < n; i++) { ans += abs(nums[i] − nums[i − 1]); } int orig = ans; for (int i = 1; i < n − 1; i++) { ans = max(ans, orig − abs(nums[i] − nums[i + 1]) + abs(nums[0] − nums[i + 1])); ans = max(ans, orig − abs(nums[i] − nums[i − 1]) + abs(nums[n − 1] − nums[i − 1])); } int pp = −abs(nums[1] − nums[0]) + nums[0] + nums[1]; int pm = −abs(nums[1] − nums[0]) + nums[0] − nums[1]; int mp = −abs(nums[1] − nums[0]) − nums[0] + nums[1]; int mm = −abs(nums[1] − nums[0]) − nums[0] − nums[1]; for (int j = 2; j < n − 1; j++) { int jerror = abs(nums[j + 1] − nums[j]); ans = max(ans, orig + pp − jerror − nums[j] − nums[j + 1]); ans = max(ans, orig + pm − jerror − nums[j] + nums[j + 1]); ans = max(ans, orig + mp − jerror + nums[j] − nums[j + 1]); ans = max(ans, orig + mm − jerror + nums[j] + nums[j + 1]); pp = max(pp, −abs(nums[j] − nums[j − 1]) + nums[j − 1] + nums[j]); pm = max(pm, −abs(nums[j] − nums[j − 1]) + nums[j − 1] − nums[j]); mp = max(mp, −abs(nums[j] − nums[j − 1]) − nums[j − 1] + nums[j]); mm = max(mm, −abs(nums[j] − nums[j − 1]) − nums[j − 1] − nums[j]); } return ans; } int main(){ vector<int> v = {2, 4, 6}; cout << solve(v); }
Input
{2, 4, 6}
Output
6