
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Primitive Root of a Prime Number n Modulo n in C++
In this problem, we are given a prime number N. our task is to print the primitive root of prime number N modulo N.
Primitive root of prime number N is an integer x lying between [1, n-1] such that all values of xk (mod n) where k lies in [0, n-2] are unique.
Let’s take an example to understand the problem,
Input: 13 Output: 2
To solve this problem, we have to use mathematical function called Euler’s Totient Function.
Euler’s Totient Function is the count of numbers from 1 to n which are relatively prime to the number n.
A number i is relatively prime if GCD (i, n) = 1.
In solution, if the multiplicative order of x modulo n is equal to Euler’s Totient Function, then the number is primitive root otherwise not. We will check for all relative primes.
Note: Euler’s Totient Function of a prime number n=n-1
The below code will show the implementation of our solution,
Example
#include<bits/stdc++.h> using namespace std; bool isPrimeNumber(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) if (n%i == 0 || n%(i+2) == 0) return false; return true; } int power(int x, unsigned int y, int p) { int res = 1; x = x % p; while (y > 0){ if (y & 1) res = (res*x) % p; y = y >> 1; x = (x*x) % p; } return res; } void GeneratePrimes(unordered_set<int> &s, int n) { while (n%2 == 0){ s.insert(2); n = n/2; } for (int i = 3; i <= sqrt(n); i = i+2){ while (n%i == 0){ s.insert(i); n = n/i; } } if (n > 2) s.insert(n); } int findPrimitiveRoot(int n) { unordered_set<int> s; if (isPrimeNumber(n)==false) return -1; int ETF = n-1; GeneratePrimes(s, ETF); for (int r=2; r<=ETF; r++){ bool flag = false; for (auto it = s.begin(); it != s.end(); it++){ if (power(r, ETF/(*it), n) == 1){ flag = true; break; } } if (flag == false) return r; } return -1; } int main() { int n= 13; cout<<" Smallest primitive root of "<<n<<" is "<<findPrimitiveRoot(n); return 0; }
Output
Smallest primitive root of 13 is 2