• Set the figure size and adjust the padding between and around the subplots.
  • Create a Pandas data fram">

    Plot multiple time-series DataFrames into a single plot using Pandas (Matplotlib)



    To plot multiple time-series data frames into a single plot using Pandas, we can take the following steps −

    • Set the figure size and adjust the padding between and around the subplots.
    • Create a Pandas data frame with time series.
    • Set the time series index for plot.
    • Plot rupees and dollor on the plot.
    • To display the figure, use show() method.

    Example

    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt, dates
    
    plt.rcParams["figure.figsize"] = [7.50, 3.50]
    plt.rcParams["figure.autolayout"] = True
    
    df = pd.DataFrame(dict(date=list(pd.date_range("2021-01-01", periods=10)), rupees=np.linspace(1, 10, 10), dollar=np.linspace(10, 20, 10)))
    
    df.set_index(pd.to_datetime(df.date), drop=True).plot()
    df = df.set_index(pd.to_datetime(df.date), drop=True)
    df.rupees.plot(grid=True, label="rupees", legend=True)
    df.dollar.plot(secondary_y=True, label="dollar", legend=True)
    
    plt.show()

    Output

    Kickstart Your Career

    Get certified by completing the course

    Get Started
    Advertisements