
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Maximum Length of Segments of 0's and 1's in C++
Problem statement
Given a string comprising of ones and zeros. The task is to find the maximum length of the segments of string such that a number of 1 in each segment is greater than 0
Example
If input string is “10111000001011” the answer will 12 as follows −
- First segment is of length 7 10111000001011
- Second segment is of length 5 10111000001011
- Total length is length of (segment 1 + segment 2) = (7 + 5) = 12
Algorithm
- If start == n then return 0.
- Run a loop from start till n, computing for each subarray till n.
- If character is 1 then increment the count of 1 else increment the count of 0.
- If count of 1 is greater than 0, recursively call the function for index (k+1) i.e. next index and add the remaining length i.e. k-start+1.
- Else only recursively call the function for next index k+1.
- Return dp[start].
Example
#include <bits/stdc++.h> using namespace std; int getSegmentWithMaxLength(int start, string str, int n, int dp[]) { if (start == n) { return 0; } if (dp[start] != -1) { return dp[start]; } dp[start] = 0; int one = 0; int zero = 0; int k; for (k = start; k < n; ++k) { if (str[k] == '1') { ++one; } else { ++zero; } if (one > zero) { dp[start] = max(dp[start], getSegmentWithMaxLength(k + 1, str, n, dp) + k - start + 1); } else { dp[start] = max(dp[start], getSegmentWithMaxLength(k + 1, str, n, dp)); } } return dp[start]; } int main() { string str = "10111000001011"; int n = str.size(); int dp[n + 1]; memset(dp, -1, sizeof(dp)); cout << "Maximum length of segment = " << getSegmentWithMaxLength(0, str, n, dp) << endl; return 0; }
Output
When you compile and execute above program. It generates following output −
Maximum length of segment = 12
Advertisements