
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Matrix Manipulation in Python
We can easily perform matrix manipulation in Python using the Numpy library. NumPy is a Python package. It stands for 'Numerical Python'. It is a library consisting of multidimensional array objects and a collection of routines for processing of array. Using NumPy, mathematical and logical operations on arrays can be performed.
Install and Import Numpy
To install Numpy, use pip ?
pip install numpy
Import Numpy ?
import numpy
Add, Subtract, Divide and Multiply matrices
We will use the following Numpy methods for matrix manipulations ?
numpy.add() ? Add two matrices
numpy.subtract() ? Subtract two matrices
numpy.divide() ? Divide two matrices
numpy.multiply() ? Multiply two matrices
Let us now see the code ?
Example
import numpy as np # Two matrices mx1 = np.array([[5, 10], [15, 20]]) mx2 = np.array([[25, 30], [35, 40]]) print("Matrix1 =\n",mx1) print("\nMatrix2 =\n",mx2) # The addition() is used to add matrices print ("\nAddition of two matrices: ") print (np.add(mx1,mx2)) # The subtract() is used to subtract matrices print ("\nSubtraction of two matrices: ") print (np.subtract(mx1,mx2)) # The divide() is used to divide matrices print ("\nMatrix Division: ") print (np.divide(mx1,mx2)) # The multiply()is used to multiply matrices print ("\nMultiplication of two matrices: ") print (np.multiply(mx1,mx2))
Output
Matrix1 = [[ 5 10] [15 20]] Matrix2 = [[25 30] [35 40]] Addition of two matrices: [[30 40] [50 60]] Subtraction of two matrices: [[-20 -20] [-20 -20]] Matrix Division: [[0.2 0.33333333] [0.42857143 0.5 ]] Multiplication of two matrices: [[125 300] [525 800]]
Summation of matrix elements
The sum() method is used to find the summation ?
Example
import numpy as np # A matrix mx = np.array([[5, 10], [15, 20]]) print("Matrix =\n",mx) print ("\nThe summation of elements=") print (np.sum(mx)) print ("\nThe column wise summation=") print (np.sum(mx,axis=0)) print ("\nThe row wise summation=") print (np.sum(mx,axis=1))
Output
Matrix = [[ 5 10] [15 20]] The summation of elements= 50 The column wise summation= [20 30] The row wise summation= [15 35]
Transpose a Matrix
The .T property is used to find the Transpose of a Matrix ?
Example
import numpy as np # A matrix mx = np.array([[5, 10], [15, 20]]) print("Matrix =\n",mx) print ("\nThe Transpose =") print (mx.T)
Output
Matrix = [[ 5 10] [15 20]] The Transpose = [[ 5 15] [10 20]]
Advertisements