
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Magic Squares in Grid in C++
Suppose we have a grid we have to find the number of magic square sub-grid into that grid. A magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
So, if the input is like
4 | 3 | 8 | 4 |
9 | 5 | 1 | 9 |
2 | 7 | 6 | 2 |
then the output will be 1, as the magic square is
4 | 3 | 8 |
9 | 5 | 1 |
2 | 7 | 6 |
To solve this, we will follow these steps −
- Define one set with values: [816357492, 834159672, 618753294, 672159834,492357816, 438951276, 294753618, 276951438]
- Define an array offset of size: 9 x 2 := {{-2,-2},{-2,-1},{-2,0},{-1,-2},{-1,-1},{-1,0},{0,-2},{0,-1},{0,0}}
- ans := 0
- for initialize i := 2, when i < grid row count, update (increase i by 1), do −
- for initialize j := 2, when j < grid row count, update (increase j by 1), do −
- sum := 0
- for initialize k := 0, when k < 9, update (increase k by 1), do −
- sum := sum * 10
- sum := sum + grid[i + offset[k, 0], j + offset[k, 1]]
- ans := ans + occurrence of sum in s
- for initialize j := 2, when j < grid row count, update (increase j by 1), do −
- return ans
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; class Solution { public: int numMagicSquaresInside(vector<vector<int>>& grid) { const unordered_set<int> s{816357492, 834159672, 618753294, 672159834,492357816, 438951276, 294753618,276951438}; const int offset[][2] = {{-2, -2}, {-2, -1}, {-2, 0},{-1, -2}, {-1, -1}, {-1, 0}, { 0, -2}, { 0, -1}, { 0, 0}}; int ans = 0; for(int i = 2; i< grid.size(); i++) { for(int j = 2; j<grid.size(); j++) { int sum = 0; for(int k = 0; k<9; k++) { sum *= 10; sum += grid[i + offset[k][0]][j+offset[k][1]]; } ans += s.count(sum); } } return ans; } }; main(){ Solution ob; vector<vector<int>> v = {{4,3,8,4},{9,5,1,9},{2,7,6,2}}; cout << (ob.numMagicSquaresInside(v)); }
Input
{{4,3,8,4},{9,5,1,9},{2,7,6,2}}
Output
1
Advertisements