
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Interchange Diagonals of a Matrix in Java
In this article, we will understand how to interchange the diagonals in Java. A matrix has a row-and-column arrangement of its elements. A matrix with m rows and n columns can be called an m à n matrix.
Interchange Diagonals
A matrix operation that swaps the elements of the two diagonals (primary and secondary) except for the middle element in the case of an odd-sized matrix.
Individual entries in the matrix are called elements and can be represented by a[i][j] which suggests that the element a is present in the ith row and jth column.
Input
The matrix is defined as: 4 5 6 1 2 3 7 8 9
Output
The matrix after interchanging the elements: 6 5 4 1 2 3 9 8 7
Main Function Approach
In this approach, we bind all the operations together under the ?main' function.
- Step 1: Define and Display the Matrix: The matrix is initialized and then displayed to the user.
for (int i = 0; i < matrix_size; ++i)
if (i != matrix_size / 2) {
int temp = input_matrix[i][i];
input_matrix[i][i] = input_matrix[i][matrix_size - i - 1];
input_matrix[i][matrix_size - i - 1] = temp;
}
- Step 2: Swap the Diagonal Elements: This step swaps the elements of the two diagonals.
for (int i = 0; i < matrix_size; ++i)
if (i != matrix_size / 2) {
int temp = input_matrix[i][i];
input_matrix[i][i] = input_matrix[i][matrix_size - i - 1];
input_matrix[i][matrix_size - i - 1] = temp;
}
- Step 3: Display the Matrix After Swapping: The matrix is returned after the diagonal elements have been swapped.
System.out.println("\nThe matrix after interchanging the elements: ");
for (int i = 0; i < matrix_size; ++i) {
for (int j = 0; j < matrix_size; ++j)
System.out.print(input_matrix[i][j] + " ");
System.out.println();
}
Example 1
The following is an example of interchanging the diagonals using the main function approach?public class InterchangeDiagonals { public static int matrix_size = 3; public static void main (String[] args) { int input_matrix[][] = { {4, 5, 6}, {1, 2, 3}, {7, 8, 9} }; System.out.println("The matrix is defined as: "); for (int i = 0; i < matrix_size; i++) { for (int j = 0; j < matrix_size; j++) { System.out.print(input_matrix[i][j] + " "); } System.out.println(); } for (int i = 0; i < matrix_size; ++i) if (i != matrix_size / 2) { int temp = input_matrix[i][i]; input_matrix[i][i] = input_matrix[i][matrix_size - i - 1]; input_matrix[i][matrix_size - i - 1] = temp; } System.out.println("\nThe matrix after interchanging the elements: "); for (int i = 0; i < matrix_size; ++i) { for (int j = 0; j < matrix_size; ++j) System.out.print(input_matrix[i][j]+" "); System.out.println(); } } }
Output
The matrix is defined as: 4 5 6 1 2 3 7 8 9 The matrix after interchanging the elements: 6 5 4 1 2 3 9 8 7
Function-Based Approach
In this approach, we encapsulate the operations into functions exhibiting object-oriented programming.
- Step 1: Define and Display the Matrix: Similar to the previous example, the matrix is initialized and displayed.
int input_matrix[][] = {
{4, 5, 6},
{1, 2, 3},
{7, 8, 9}
};
System.out.println("The matrix is defined as: ");
for (int i = 0; i < matrix_size; i++) {
for (int j = 0; j < matrix_size; j++) {
System.out.print(input_matrix[i][j] + " ");
}
System.out.println();
}
- Step 2: Create a Function to Swap the Diagonal Elements: The logic for swapping diagonals is moved into a separate function for better organization.
static void interchange_diagonals(int input_matrix[][]) {
for (int i = 0; i < matrix_size; ++i)
if (i != matrix_size / 2) {
int temp = input_matrix[i][i];
input_matrix[i][i] = input_matrix[i][matrix_size - i - 1];
input_matrix[i][matrix_size - i - 1] = temp;
}
}
- Step 3: Call the Function and Display the Matrix: The function is called, and the matrix is printed again after swapping the diagonals.
interchange_diagonals(input_matrix);
System.out.println("\nThe matrix after interchanging the elements: ");
for (int i = 0; i < matrix_size; ++i) {
for (int j = 0; j < matrix_size; ++j)
System.out.print(input_matrix[i][j] + " ");
System.out.println();
}
Example 2
The following is an example of interchanging the diagonals using the function-based approach ?
public class InterchangeDiagonals { public static int matrix_size = 3; static void interchange_diagonals(int input_matrix[][]) { for (int i = 0; i < matrix_size; ++i) if (i != matrix_size / 2) { int temp = input_matrix[i][i]; input_matrix[i][i] = input_matrix[i][matrix_size - i - 1]; input_matrix[i][matrix_size - i - 1] = temp; } System.out.println("\nThe matrix after interchanging the elements: "); for (int i = 0; i < matrix_size; ++i) { for (int j = 0; j < matrix_size; ++j) System.out.print(input_matrix[i][j]+" "); System.out.println(); } } public static void main (String[] args) { int input_matrix[][] = { {4, 5, 6}, {1, 2, 3}, {7, 8, 9} }; System.out.println("The matrix is defined as: "); for (int i = 0; i < matrix_size; i++) { for (int j = 0; j < matrix_size; j++) { System.out.print(input_matrix[i][j] + " "); } System.out.println(); } interchange_diagonals(input_matrix); } }
Output
The matrix is defined as: 4 5 6 1 2 3 7 8 9 The matrix after interchanging the elements: 6 5 4 1 2 3 9 8 7