
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Remove Rows Containing All Zeros in an R Data Frame
Often, we get missing data and sometimes missing data is filled with zeros if zero is not the actual range for a variable. In this type of situations, we can remove the rows where all the values are zero. For this purpose, we can use rowSums function and if the sum is greater than zero then keep the row otherwise neglect it.
Example1
Consider the below data frame −
set.seed(251) x1<−sample(0:1,20,replace=TRUE) x2<−sample(0:1,20,replace=TRUE) df1<−data.frame(x1,x2) df1
Output
x1 x2 1 0 0 2 0 1 3 0 1 4 1 1 5 1 0 6 0 1 7 1 0 8 1 1 9 1 1 10 0 0 11 0 1 12 1 0 13 1 0 14 1 1 15 0 1 16 1 1 17 1 1 18 1 1 19 1 1 20 0 0
Removing rows having all zeros −
df1[rowSums(df1[])>0,]
Output
x1 x2 2 0 1 3 0 1 4 1 1 5 1 0 6 0 1 7 1 0 8 1 1 9 1 1 11 0 1 12 1 0 13 1 0 14 1 1 15 0 1 16 1 1 17 1 1 18 1 1 19 1 1
Example2
y1<−sample(c(0,5),20,replace=TRUE) y2<−sample(c(0,2),20,replace=TRUE) df2<−data.frame(y1,y2) df2
Output
y1 y2 1 5 0 2 0 2 3 0 2 4 0 0 5 5 2 6 5 0 7 5 0 8 0 2 9 0 2 10 5 0 11 0 0 12 0 0 13 5 0 14 0 0 15 5 2 16 5 0 17 0 0 18 0 2 19 5 2 20 0 0
Removing rows having all zeros −
df2[rowSums(df2[])>0,]
Output
y1 y2 1 5 0 2 0 2 3 0 2 5 5 2 6 5 0 7 5 0 8 0 2 9 0 2 10 5 0 13 5 0 15 5 2 16 5 0 18 0 2 19 5 2
Example3
z1<−rep(0,20) z2<−sample(c(0,1),20,replace=TRUE) df3<−data.frame(z1,z2) df3
Output
z1 z2 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 1 7 0 1 8 0 1 9 0 1 10 0 1 11 0 1 12 0 0 13 0 0 14 0 1 15 0 1 16 0 0 17 0 1 18 0 1 19 0 1 20 0 1
Removing rows having all zeros −
df3[rowSums(df3[])>0,]
Output
z1 z2 6 0 1 7 0 1 8 0 1 9 0 1 10 0 1 11 0 1 14 0 1 15 0 1 17 0 1 18 0 1 19 0 1 20 0 1
Advertisements