
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Get Dictionary-like Objects from Dataset Using Python Scikit-learn
With the help of the Scikit-learn python library, we can get the dictionary-like objects of a dataset. Some of the interesting attributes of dictionary-like objects are as follows ?
data ? It represents the data to learn.
target ? It represents the regression target.
DESCR ? The description of the dataset.
target_names ? It gives the target names on of the dataset.
feature_names ? It gives the feature names from the dataset.
Example 1
In the example below we use the California Housing dataset to get its dictionary-like objects.
# Import necessary libraries import sklearn import pandas as pd from sklearn.datasets import fetch_california_housing # Loading the California housing dataset housing = fetch_california_housing() # Print dictionary-like objects print(housing.keys())
Output
It will produce the following output ?
dict_keys(['data', 'target', 'frame', 'target_names', 'feature_names', 'DESCR'])
Example 2
We can also get more details about these dictionary-like objects as follows ?
# Import necessary libraries import sklearn import pandas as pd from sklearn.datasets import fetch_california_housing print(housing.data.shape) print('\n') print(housing.target.shape) print('\n') print(housing.feature_names) print('\n') print(housing.target_names) print('\n') print(housing.DESCR)
Output
It will produce the following output ?
(20640, 8) (20640,) ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup', 'Latitude', 'Longitude'] ['MedHouseVal'] .. _california_housing_dataset: California Housing dataset -------------------------- **Data Set Characteristics:** :Number of Instances: 20640 :Number of Attributes: 8 numeric, predictive attributes and the target :Attribute Information: - MedInc median income in block group - HouseAge median house age in block group - AveRooms average number of rooms per household - AveBedrms average number of bedrooms per household - Population block group population - AveOccup average number of household members - Latitude block group latitude - Longitude block group longitude :Missing Attribute Values: None Omitted due to length of the output?
Example 3
# Import necessary libraries import sklearn import pandas as pd from sklearn.datasets import fetch_california_housing # Loading the California housing dataset housing = fetch_california_housing(as_frame=True) print(housing.frame.info())
Output
It will produce the following output ?
<class 'pandas.core.frame.DataFrame'> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 MedInc 20640 non-null float64 1 HouseAge 20640 non-null float64 2 AveRooms 20640 non-null float64 3 AveBedrms 20640 non-null float64 4 Population 20640 non-null float64 5 AveOccup 20640 non-null float64 6 Latitude 20640 non-null float64 7 Longitude 20640 non-null float64 8 MedHouseVal 20640 non-null float64 dtypes: float64(9) memory usage: 1.4 MB
Advertisements