
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Logarithm of Values in R Data Frame Columns
To find the log of each value if some columns are categorical in R data frame, we can follow the below steps −
First of all, create a data frame.
Then, use numcolwise function from plyr package to find the log if some columns are categorical.
Example
Create the data frame
Let’s create a data frame as shown below −
Level<-sample(c("low","medium","high"),25,replace=TRUE) Group<-sample(c("first","second"),25,replace=TRUE) Score<-sample(1:50,25) Demand<-sample(1:100,25) df<-data.frame(Level,Group,Score,Demand) df
Output
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
Level Group Score Demand 1 low first 32 83 2 medium first 21 97 3 medium first 30 46 4 medium first 25 99 5 medium second 10 63 6 low second 11 2 7 medium first 17 98 8 low first 8 81 9 high second 23 23 10 high first 16 68 11 high second 33 60 12 medium second 9 52 13 medium second 6 56 14 medium first 45 40 15 low second 31 14 16 low first 26 72 17 high second 18 77 18 medium first 43 85 19 medium first 34 73 20 medium second 12 64 21 low second 39 29 22 medium first 36 37 23 low second 15 33 24 medium second 14 57 25 low second 37 35
Find the log if some columns are categorical
Using numcolwise function from plyr package to find the log of each value in numerical columns in the data frame df −
Level<-sample(c("low","medium","high"),25,replace=TRUE) Group<-sample(c("first","second"),25,replace=TRUE) Score<-sample(1:50,25) Demand<-sample(1:100,25) df<-data.frame(Level,Group,Score,Demand) library(plyr) numcolwise(log)(df)
Output
Score Demand 1 3.465736 4.4188406 2 3.044522 4.5747110 3 3.401197 3.8286414 4 3.218876 4.5951199 5 2.302585 4.1431347 6 2.397895 0.6931472 7 2.833213 4.5849675 8 2.079442 4.3944492 9 3.135494 3.1354942 10 2.772589 4.2195077 11 3.496508 4.0943446 12 2.197225 3.9512437 13 1.791759 4.0253517 14 3.806662 3.6888795 15 3.433987 2.6390573 16 3.258097 4.2766661 17 2.890372 4.3438054 18 3.761200 4.4426513 19 3.526361 4.2904594 20 2.484907 4.1588831 21 3.663562 3.3672958 22 3.583519 3.6109179 23 2.708050 3.4965076 24 2.639057 4.0430513 25 3.610918 3.5553481
Advertisements