
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Extract P-Value and F-Statistic from AOV Output in R
The analysis of variance technique helps us to identify whether there exists a significant mean difference in more than two variables or not. To detect this difference, we either use F-statistic value or p-value. If the F-statistic value is greater than the critical value of F or if p-value is less than the level of significance then we say that at least one of the means is significantly different from the rest. To extract the p-value and F-statistic value, we can make use of summary function of the ANOVA model.
Example
set.seed(123) Group<-rep(c("G1","G2","G3","G4"),times=5) Response<-runif(20,2,5) df<-data.frame(Group,Response) df
Output
Group Response 1 G1 2.862733 2 G2 4.364915 3 G3 3.226931 4 G4 4.649052 5 G1 4.821402 6 G2 2.136669 7 G3 3.584316 8 G4 4.677257 9 G1 3.654305 10 G2 3.369844 11 G3 4.870500 12 G4 3.360002 13 G1 4.032712 14 G2 3.717900 15 G3 2.308774 16 G4 4.699475 17 G1 2.738263 18 G2 2.126179 19 G3 2.983762 20 G4 4.863511 ANOVA<-aov(Response~Group,df) summary(ANOVA) Df Sum Sq Mean Sq F value Pr(F) Group 3 4.813 1.6043 2.141 0.135 Residuals 16 11.990 0.7494 summary(ANOVA)[[1]][1,4:5] F value Pr(F) Group 2.1408 0.1351
If we want to extract only p-value then it can be done as shown below −
summary(ANOVA)[[1]][1,5] [1] 0.1351315
If we want to extract only F-value then it can be done as shown below −
summary(ANOVA)[[1]][1,4] [1] 2.140825
Example
Let’s have a look at one more example −
Factor<-rep(c("F1","F2","F3","F4","F5"),each=4) Dependent<-rnorm(20,2) ANOVA_data<-data.frame(Factor,Dependent) ANOVA_data
Output
Factor Dependent 1 F1 2.2236414 2 F1 4.0072015 3 F1 3.0119791 4 F1 1.6975408 5 F2 0.9747552 6 F2 1.7326152 7 F2 1.8008943 8 F2 2.1311226 9 F3 2.1457999 10 F3 2.3620647 11 F3 2.6739812 12 F3 4.0720358 13 F4 1.4589714 14 F4 0.9295078 15 F4 1.6275433 16 F4 1.5148586 17 F5 2.2747842 18 F5 1.5204874 19 F5 2.7981053 20 F5 0.9955488 ANOVA_Model<-aov(Dependent~Factor,ANOVA_data) summary(ANOVA_Model) Df Sum Sq Mean Sq F value Pr(F) Factor 4 6.647 1.6617 3.04 0.0508 . Residuals 15 8.200 0.5467 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 summary(ANOVA_Model)[[1]][1,4:5] F value Pr(F) Factor 3.0395 0.05078 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 summary(ANOVA_Model)[[1]][1,5] [1] 0.05077798 summary(ANOVA_Model)[[1]][1,4] [1] 3.039549
Advertisements