
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Delete Rows of an R Data Frame Based on String Match
Often, we need to subset our data frame and sometimes this subsetting is based on strings. If we have a character column or a factor column then we might be having its values as a string and we can subset the whole data frame by deleting rows that contain a value or part of a value, for example, we can get rid of all rows that contain set or setosa word in Species column.
Example
Consider the below data frame −
Character<-c("Andy","Amy","Carolina","Stone","Sam","Carriph","Selcan","Toni","Andrew","Samuel","Samreen","Erturul","Engjin","Engeline","Andreas","Sofia","Yannis","Salvador","Bahattin","Samsa","Orgopolos","Dragos") ID<-1:22 df<-data.frame(ID,Character) df
Output
ID Character 1 1 Andy 2 2 Amy 3 3 Carolina 4 4 Stone 5 5 Sam 6 6 Carriph 7 7 Selcan 8 8 Toni 9 9 Andrew 10 10 Samuel 11 11 Samreen 12 12 Erturul 13 13 Engjin 14 14 Engeline 15 15 Andreas 16 16 Sofia 17 17 Yannis 18 18 Salvador 19 19 Bahattin 20 20 Samsa 21 21 Orgopolos 22 22 Dragos
Example
df[!grepl("An",df$Character),]
Output
ID Character 2 2 Amy 3 3 Carolina 4 4 Stone 5 5 Sam 6 6 Carriph 7 7 Selcan 8 8 Toni 10 10 Samuel 11 11 Samreen 12 12 Erturul 13 13 Engjin 14 14 Engeline 16 16 Sofia 17 17 Yannis 18 18 Salvador 19 19 Bahattin 20 20 Samsa 21 21 Orgopolos 22 22 Dragos
Example
df[!grepl("os",df$Character),]
Output
ID Character 1 1 Andy 2 2 Amy 3 3 Carolina 4 4 Stone 5 5 Sam 6 6 Carriph 7 7 Selcan 8 8 Toni 9 9 Andrew 10 10 Samuel 11 11 Samreen 12 12 Erturul 13 13 Engjin 14 14 Engeline 15 15 Andreas 16 16 Sofia 17 17 Yannis 18 18 Salvador 19 19 Bahattin 20 20 Samsa
Example
df[!grepl("Sam",df$Character),]
Output
ID Character 1 1 Andy 2 2 Amy 3 3 Carolina 4 4 Stone 6 6 Carriph 7 7 Selcan 8 8 Toni 9 9 Andrew 12 12 Erturul 13 13 Engjin 14 14 Engeline 15 15 Andreas 16 16 Sofia 17 17 Yannis 18 18 Salvador 19 19 Bahattin 21 21 Orgopolos 22 22 Dragos
Example
df[!grepl("on",df$Character),]
Output
ID Character 1 1 Andy 2 2 Amy 3 3 Carolina 5 5 Sam 6 6 Carriph 7 7 Selcan 9 9 Andrew 10 10 Samuel 11 11 Samreen 12 12 Erturul 13 13 Engjin 14 14 Engeline 15 15 Andreas 16 16 Sofia 17 17 Yannis 18 18 Salvador 19 19 Bahattin 20 20 Samsa 21 21 Orgopolos 22 22 Dragos
Example
df[!grepl("ra",df$Character),]
Output
ID Character 1 1 Andy 2 2 Amy 3 3 Carolina 4 4 Stone 5 5 Sam 6 6 Carriph 7 7 Selcan 8 8 Toni 9 9 Andrew 10 10 Samuel 11 11 Samreen 12 12 Erturul 13 13 Engjin 14 14 Engeline 15 15 Andreas 16 16 Sofia 17 17 Yannis 18 18 Salvador 19 19 Bahattin 20 20 Samsa 21 21 Orgopolos
Let’s have a look at an example using iris data −
Example
head(iris)
Output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa
Example
iris[!grepl("set",iris$Species),]
Output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 51 7.0 3.2 4.7 1.4 versicolor 52 6.4 3.2 4.5 1.5 versicolor 53 6.9 3.1 4.9 1.5 versicolor 54 5.5 2.3 4.0 1.3 versicolor 55 6.5 2.8 4.6 1.5 versicolor 56 5.7 2.8 4.5 1.3 versicolor 57 6.3 3.3 4.7 1.6 versicolor 58 4.9 2.4 3.3 1.0 versicolor 59 6.6 2.9 4.6 1.3 versicolor 60 5.2 2.7 3.9 1.4 versicolor 61 5.0 2.0 3.5 1.0 versicolor 62 5.9 3.0 4.2 1.5 versicolor 63 6.0 2.2 4.0 1.0 versicolor 64 6.1 2.9 4.7 1.4 versicolor 65 5.6 2.9 3.6 1.3 versicolor 66 6.7 3.1 4.4 1.4 versicolor 67 5.6 3.0 4.5 1.5 versicolor 68 5.8 2.7 4.1 1.0 versicolor 69 6.2 2.2 4.5 1.5 versicolor 70 5.6 2.5 3.9 1.1 versicolor 71 5.9 3.2 4.8 1.8 versicolor 72 6.1 2.8 4.0 1.3 versicolor 73 6.3 2.5 4.9 1.5 versicolor 74 6.1 2.8 4.7 1.2 versicolor 75 6.4 2.9 4.3 1.3 versicolor 76 6.6 3.0 4.4 1.4 versicolor 77 6.8 2.8 4.8 1.4 versicolor 78 6.7 3.0 5.0 1.7 versicolor 79 6.0 2.9 4.5 1.5 versicolor 80 5.7 2.6 3.5 1.0 versicolor 81 5.5 2.4 3.8 1.1 versicolor 82 5.5 2.4 3.7 1.0 versicolor 83 5.8 2.7 3.9 1.2 versicolor 84 6.0 2.7 5.1 1.6 versicolor 85 5.4 3.0 4.5 1.5 versicolor 86 6.0 3.4 4.5 1.6 versicolor 87 6.7 3.1 4.7 1.5 versicolor 88 6.3 2.3 4.4 1.3 versicolor 89 5.6 3.0 4.1 1.3 versicolor 90 5.5 2.5 4.0 1.3 versicolor 91 5.5 2.6 4.4 1.2 versicolor 92 6.1 3.0 4.6 1.4 versicolor 93 5.8 2.6 4.0 1.2 versicolor 94 5.0 2.3 3.3 1.0 versicolor 95 5.6 2.7 4.2 1.3 versicolor 96 5.7 3.0 4.2 1.2 versicolor 97 5.7 2.9 4.2 1.3 versicolor 98 6.2 2.9 4.3 1.3 versicolor 99 5.1 2.5 3.0 1.1 versicolor 100 5.7 2.8 4.1 1.3 versicolor 101 6.3 3.3 6.0 2.5 virginica 102 5.8 2.7 5.1 1.9 virginica 103 7.1 3.0 5.9 2.1 virginica 104 6.3 2.9 5.6 1.8 virginica 105 6.5 3.0 5.8 2.2 virginica 106 7.6 3.0 6.6 2.1 virginica 107 4.9 2.5 4.5 1.7 virginica 108 7.3 2.9 6.3 1.8 virginica 109 6.7 2.5 5.8 1.8 virginica 110 7.2 3.6 6.1 2.5 virginica 111 6.5 3.2 5.1 2.0 virginica 112 6.4 2.7 5.3 1.9 virginica 113 6.8 3.0 5.5 2.1 virginica 114 5.7 2.5 5.0 2.0 virginica 115 5.8 2.8 5.1 2.4 virginica 116 6.4 3.2 5.3 2.3 virginica 117 6.5 3.0 5.5 1.8 virginica 118 7.7 3.8 6.7 2.2 virginica 119 7.7 2.6 6.9 2.3 virginica 120 6.0 2.2 5.0 1.5 virginica 121 6.9 3.2 5.7 2.3 virginica 122 5.6 2.8 4.9 2.0 virginica 123 7.7 2.8 6.7 2.0 virginica 124 6.3 2.7 4.9 1.8 virginica 125 6.7 3.3 5.7 2.1 virginica 126 7.2 3.2 6.0 1.8 virginica 127 6.2 2.8 4.8 1.8 virginica 128 6.1 3.0 4.9 1.8 virginica 129 6.4 2.8 5.6 2.1 virginica 130 7.2 3.0 5.8 1.6 virginica 131 7.4 2.8 6.1 1.9 virginica 132 7.9 3.8 6.4 2.0 virginica 133 6.4 2.8 5.6 2.2 virginica 134 6.3 2.8 5.1 1.5 virginica 135 6.1 2.6 5.6 1.4 virginica 136 7.7 3.0 6.1 2.3 virginica 137 6.3 3.4 5.6 2.4 virginica 138 6.4 3.1 5.5 1.8 virginica 139 6.0 3.0 4.8 1.8 virginica 140 6.9 3.1 5.4 2.1 virginica 141 6.7 3.1 5.6 2.4 virginica 142 6.9 3.1 5.1 2.3 virginica 143 5.8 2.7 5.1 1.9 virginica 144 6.8 3.2 5.9 2.3 virginica 145 6.7 3.3 5.7 2.5 virginica 146 6.7 3.0 5.2 2.3 virginica 147 6.3 2.5 5.0 1.9 virginica 148 6.5 3.0 5.2 2.0 virginica 149 6.2 3.4 5.4 2.3 virginica 150 5.9 3.0 5.1 1.8 virginica
Advertisements