
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Add Prefix to Columns of an R Data Frame
If we want to provide more information about the data, we have in columns of an R data frames then we might want to use prefixes. These prefixes help everyone to understand the data, for example, we can use data set name as a prefix, the analysis objective as a prefix, or something that is common among all the columns. To add a prefix to columns of an R data frame, we can use paste function to separate the prefix with the original column names.
Example
Consider the below data frame −
Example
set.seed(100) Rate <-sample(1:100,20) Level <-sample(1:10,20,replace=TRUE) Region <-rep(1:4,times=5) df <-data.frame(Rate,Level,Region) df
Output
Rate Level Region 1 74 2 1 2 89 3 2 3 78 4 3 4 23 4 4 5 86 4 1 6 70 5 2 7 4 7 3 8 55 9 4 9 95 4 1 10 7 2 2 11 91 6 3 12 93 7 4 13 43 1 1 14 82 6 2 15 61 9 3 16 12 9 4 17 51 9 1 18 72 6 2 19 18 8 3 20 25 7 4
Adding prefix to the columns of the data frame df −
Example
colnames(df) <-paste("2FactorData",colnames(df),sep="-") df
Output
2FactorData-Rate 2FactorData-Level 2FactorData-Region 1 74 2 1 2 89 3 2 3 78 4 3 4 23 4 4 5 86 4 1 6 70 5 2 7 4 7 3 8 55 9 4 9 95 4 1 10 7 2 2 11 91 6 3 12 93 7 4 13 43 1 1 14 82 6 2 15 61 9 3 16 12 9 4 17 51 9 1 18 72 6 2 19 18 8 3 20 25 7 4
Let’s have a look at another example −
Example
x1 <-1:20 x2 <-20:1 y <-rnorm(20) df_new <-data.frame(x1,x2,y) df_new
Output
x1 x2 y 1 1 20 -0.69001432 2 2 19 -0.22179423 3 3 18 0.18290768 4 4 17 0.41732329 5 5 16 1.06540233 6 6 15 0.97020202 7 7 14 -0.10162924 8 8 13 1.40320349 9 9 12 -1.77677563 10 10 11 0.62286739 11 11 10 -0.52228335 12 12 9 1.32223096 13 13 8 -0.36344033 14 14 7 1.31906574 15 15 6 0.04377907 16 16 5 -1.87865588 17 17 4 -0.44706218 18 18 3 -1.73859795 19 19 2 0.17886485 20 20 1 1.89746570
colnames(df_new) <-paste("MultipleRegression",colnames(df_new),sep="_") df_new
Output
MultipleRegression_x1 MultipleRegression_x2 MultipleRegression_y 1 1 20 -0.69001432 2 2 19 -0.22179423 3 3 18 0.18290768 4 4 17 0.41732329 5 5 16 1.06540233 6 6 15 0.97020202 7 7 14 -0.10162924 8 8 13 1.40320349 9 9 12 -1.77677563 10 10 11 0.62286739 11 11 10 -0.52228335 12 12 9 1.32223096 13 13 8 -0.36344033 14 14 7 1.31906574 15 15 6 0.04377907 16 16 5 -1.87865588 17 17 4 -0.44706218 18 18 3 -1.73859795 19 19 2 0.17886485 20 20 1 1.89746570
Advertisements