
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Continue Training TensorFlow Model Using Pre-trained Model in Python
Tensorflow and the pre-trained model can be used to continue training the model by using the ‘fit’ method and specifying the number of training steps. The validation data is used to fit the model.
Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?
A neural network that contains at least one layer is known as a convolutional layer. We can use the Convolutional Neural Network to build learning model.
We will understand how to classify images of cats and dogs with the help of transfer learning from a pre-trained network. The intuition behind transfer learning for image classification is, if a model is trained on a large and general dataset, this model can be used to effectively serve as a generic model for the visual world. It would have learned the feature maps, which means the user won’t have to start from scratch by training a large model on a large dataset.
Read More: How can a customized model be pre-trained?
We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.
Example
print("The model training continues") fine_tune_epochs = 10 total_epochs = initial_epochs + fine_tune_epochs print("The model is being fit to the data") history_fine = model.fit(train_dataset, epochs=total_epochs, initial_epoch=history.epoch[-1], validation_data=validation_dataset)
Code credit −https://www.tensorflow.org/tutorials/images/transfer_learning
Output
The model training continues The model is being fit to the data Epoch 10/20 63/63 [==============================] - 85s 1s/step - loss: 0.1568 - accuracy: 0.9244 - val_loss: 0.0506 - val_accuracy: 0.9864 Epoch 11/20 63/63 [==============================] - 73s 1s/step - loss: 0.1433 - accuracy: 0.9419 - val_loss: 0.0429 - val_accuracy: 0.9851 Epoch 12/20 63/63 [==============================] - 72s 1s/step - loss: 0.0984 - accuracy: 0.9609 - val_loss: 0.0450 - val_accuracy: 0.9827 Epoch 13/20 63/63 [==============================] - 72s 1s/step - loss: 0.1130 - accuracy: 0.9567 - val_loss: 0.0377 - val_accuracy: 0.9876 Epoch 14/20 63/63 [==============================] - 72s 1s/step - loss: 0.0783 - accuracy: 0.9685 - val_loss: 0.0406 - val_accuracy: 0.9889 Epoch 15/20 63/63 [==============================] - 72s 1s/step - loss: 0.0740 - accuracy: 0.9697 - val_loss: 0.0365 - val_accuracy: 0.9839 Epoch 16/20 63/63 [==============================] - 72s 1s/step - loss: 0.0794 - accuracy: 0.9647 - val_loss: 0.0376 - val_accuracy: 0.9839 Epoch 17/20 63/63 [==============================] - 71s 1s/step - loss: 0.0744 - accuracy: 0.9710 - val_loss: 0.0318 - val_accuracy: 0.9913 Epoch 18/20 63/63 [==============================] - 72s 1s/step - loss: 0.0725 - accuracy: 0.9719 - val_loss: 0.0410 - val_accuracy: 0.9876 Epoch 19/20 63/63 [==============================] - 72s 1s/step - loss: 0.0761 - accuracy: 0.9684 - val_loss: 0.0331 - val_accuracy: 0.9889 Epoch 20/20 63/63 [==============================] - 71s 1s/step - loss: 0.0632 - accuracy: 0.9742 - val_loss: 0.0405 - val_accuracy: 0.9814
Explanation
- The model is fit to the data.
- This is done using the ‘fit’ method.
- The number of epochs used is initially 10.