
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Evaluate and Predict Data Using TensorFlow and Pre-Trained Models in Python
Tensorflow and the pre-trained model can be used for evaluation and prediction of data using the ‘evaluate’ and ‘predict’ methods. The batch of input images is first flattened. The sigmoid function is applied on the model so that it would return logit values.
Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?
A neural network that contains at least one layer is known as a convolutional layer. We can use the Convolutional Neural Network to build learning model.
We will understand how to classify images of cats and dogs with the help of transfer learning from a pre-trained network. The intuition behind transfer learning for image classification is, if a model is trained on a large and general dataset, this model can be used to effectively serve as a generic model for the visual world. It would have learned the feature maps, which means the user won’t have to start from scratch by training a large model on a large dataset.
Read More: How can a customized model be pre-trained?
We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.
Example
print("Evaluation and prediction") loss, accuracy = model.evaluate(test_dataset) print('Test accuracy is :', accuracy) print("The batch of image from test set is retrieved") image_batch, label_batch = test_dataset.as_numpy_iterator().next() predictions = model.predict_on_batch(image_batch).flatten() print("The sigmoid function is applied on the model, it returns logits") predictions = tf.nn.sigmoid(predictions) predictions = tf.where(predictions < 0.5, 0, 1) print('Predictions are:\n', predictions.numpy()) print('Labels are:\n', label_batch)
Code credit −https://www.tensorflow.org/tutorials/images/transfer_learning
Output
Evaluation and prediction 6/6 [==============================] - 3s 516ms/step - loss: 0.0276 - accuracy: 0.9844 Test accuracy is : 0.984375 The batch of image from test set is retrieved The sigmoid function is applied on the model, it returns logits Predictions are: [1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1] Labels are: [1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1]
Explanation
- The model can now be used to predict and evaluate the data.
- The prediction is done when an image is passed as input.
- The prediction has to be whether the image is a dog or a cat.