
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Gaussian Filter Generation in C++
As we know the Gaussian Filtering is very much useful applied in the field of image processing. It is used to reduce the noise of an image. In this section we will see how to generate a 2D Gaussian Kernel. Gaussian Distribution for generating 2D kernel is as follows.
$$G(x,y)= \frac{1}{2\Pi\:\sigma^{2}}e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$
Example
Let us see the following implementation to get better understanding −
#include <cmath> #include <iomanip> #include <iostream> #define PI 3.1415 using namespace std; void calc_filter(double kernel[][5]) { double sigma = 1.0; double p, q = 2.0 * sigma * sigma; double sum = 0.0; for (int x = -2; x <= 2; x++) { for (int y = -2; y <= 2; y++) { p = sqrt(x * x + y * y); kernel[x + 2][y + 2] = (exp(-(p * p) / q)) / (PI * q); sum += kernel[x + 2][y + 2]; } } for (int i = 0; i < 5; i++) for (int j = 0; j < 5; j++) kernel[i][j] /= sum; } int main() { double kernel[5][5]; calc_filter(kernel); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) cout << kernel[i][j] << " "; cout << endl; } }
Output
0.00296902 0.0133062 0.0219382 0.0133062 0.00296902 0.0133062 0.0596343 0.0983203 0.0596343 0.0133062 0.0219382 0.0983203 0.162103 0.0983203 0.0219382 0.0133062 0.0596343 0.0983203 0.0596343 0.0133062 0.00296902 0.0133062 0.0219382 0.0133062 0.00296902
Advertisements