
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Distinct Subsequences II in C++
Suppose we have a string S, we have to count the number of distinct subsequences of S. The result can be large, so we will return the answer modulo 10^9 + 7.
So, if the input is like "bab", then the output will be 6, as there are 6 different sequences, these are "a", "b, "ba", "ab", "bb", "abb".
To solve this, we will follow these steps −
Define a function add(), this will take a, b,
return ((a mod MOD) + (b mod MOD)) mod MOD
Define a function sub(), this will take a, b,
return (((a mod MOD) - (b mod MOD)) + MOD) mod MOD
Define a function mul(), this will take a, b,
return ((a mod MOD) * (b mod MOD)) mod MOD
From the main method, so the following −
n := size of s
Define an array dp of size 26
res := 0
s := concatenate space before s
-
for initialize i := 1, when i <= n, update (increase i by 1), do −
x := s[i]
added := sub(add(res, 1), dp[x - 'a'])
dp[x - 'a'] = add(dp[x - 'a'], added)
res := add(res, added)
return res
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; typedef long long int lli; const lli MOD = 1e9 + 7; class Solution { public: lli add(lli a, lli b){ return ( (a % MOD) + (b % MOD) ) % MOD; } lli sub(lli a, lli b){ return ( ( (a % MOD) - (b % MOD) ) + MOD ) % MOD; } lli mul(lli a, lli b){ return ( (a % MOD) * (b % MOD) ) % MOD; } int distinctSubseqII(string s) { int n = s.size(); vector <lli> dp(26); int res = 0; s = " " + s; for(lli i = 1; i <= n; i++){ char x = s[i]; int added = sub(add(res, 1) , dp[x - 'a']); dp[x - 'a'] = add(dp[x - 'a'], added); res = add(res, added); } return res; } }; main(){ Solution ob; cout << (ob.distinctSubseqII("bab")); }
Input
"bab"
Output
6