
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Create Random Sample by Ignoring Missing Values in R Vector
To create a random sample by ignoring missing values in an R vector, we can use sample function and the negation of is.na with vector name.
For Example, if we have a vector called X that contains some NAs then we can create a random sample of size 100 of X values by using the command given below −
sample(X[!is.na(X)],100,replace=TRUE)
Example 1
To create a random sample by ignoring the missing values in an R vector, use the command given below −
x1<-c(NA,2,5) sample(x1[!is.na(x1)],200,replace=TRUE)
Output
If you execute the above given command, it generates the following Output −
[1] 5 5 5 2 2 2 5 5 5 5 2 5 2 5 5 2 2 2 2 5 2 2 5 5 5 5 2 2 5 2 5 2 2 2 2 5 2 [38] 2 2 2 2 2 2 2 2 2 5 5 2 2 2 5 5 5 5 2 5 5 2 5 2 2 2 5 5 2 5 5 5 5 2 2 2 2 [75] 2 2 2 2 5 2 5 5 2 5 2 2 5 5 5 2 2 2 2 2 2 5 5 2 2 2 5 2 5 2 2 2 2 5 2 2 2 [112] 2 5 2 5 2 5 2 2 2 5 2 2 5 5 5 2 2 5 2 5 5 2 2 5 2 2 2 5 2 2 2 2 5 5 5 2 2 [149] 5 2 2 2 2 5 2 5 5 5 5 5 5 2 5 2 5 5 2 2 5 5 5 5 2 5 5 2 5 2 5 5 2 5 5 5 2 [186] 2 5 5 2 5 2 5 5 5 5 2 5 5 5 2
Example 2
To create a random sample by ignoring the missing values in an R vector, use the command given below −
x2<-c(NA,rnorm(5)) sample(x2[!is.na(x2)],100,replace=TRUE)
Output
If you execute the above given command, it generates the following Output −
[1] -0.9043329 0.4519504 0.4519504 -0.8380657 0.1107640 1.0243951 [7] -0.8380657 0.1107640 0.4519504 0.1107640 -0.8380657 0.1107640 [13] -0.8380657 1.0243951 0.1107640 0.1107640 -0.8380657 -0.9043329 [19] 0.4519504 -0.9043329 1.0243951 -0.8380657 -0.8380657 1.0243951 [25] -0.8380657 -0.8380657 0.1107640 0.1107640 1.0243951 -0.9043329 [31] 0.4519504 0.4519504 0.4519504 -0.9043329 1.0243951 -0.9043329 [37] 1.0243951 -0.9043329 0.1107640 1.0243951 1.0243951 1.0243951 [43] -0.8380657 1.0243951 1.0243951 0.1107640 -0.8380657 -0.8380657 [49] 0.1107640 -0.9043329 0.1107640 -0.9043329 0.1107640 -0.8380657 [55] 0.4519504 0.1107640 1.0243951 0.1107640 0.1107640 0.1107640 [61] -0.8380657 -0.8380657 1.0243951 1.0243951 1.0243951 0.4519504 [67] 0.1107640 -0.9043329 1.0243951 -0.8380657 -0.8380657 -0.8380657 [73] 1.0243951 1.0243951 0.4519504 1.0243951 0.1107640 1.0243951 [79] -0.9043329 0.1107640 -0.9043329 -0.9043329 -0.9043329 -0.9043329 [85] 1.0243951 0.1107640 0.4519504 0.4519504 0.4519504 0.4519504 [91] -0.9043329 0.4519504 -0.8380657 0.1107640 0.1107640 1.0243951 [97] -0.8380657 -0.8380657 0.1107640 -0.9043329
Example 3
To create a random sample by ignoring the missing values in an R vector, use the command given below −
x3<-c(NA,rpois(5,25)) x3
Output
If you execute the above command, it generates the following Output −
[1] NA 25 29 20 34 30
To create a random sample by ignoring the missing values in an R vector, add the following code to the above snippet −
x3<-c(NA,rpois(5,25)) sample(x3[!is.na(x3)],200,replace=TRUE)
Output
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 29 30 25 29 30 29 34 29 20 30 25 29 29 30 34 25 25 30 25 29 30 34 30 20 25 [26] 34 30 20 29 29 25 20 29 25 34 34 30 30 29 20 29 30 30 34 20 25 25 29 30 29 [51] 30 20 25 29 20 25 29 34 20 20 25 34 29 34 34 20 25 29 20 30 20 20 20 20 25 [76] 30 25 25 25 34 30 34 34 29 30 25 25 29 29 30 25 34 30 30 34 29 29 25 34 29 [101] 30 20 25 30 29 25 34 25 34 34 34 34 30 29 34 25 20 29 29 20 34 30 20 25 29 [126] 34 34 34 30 20 34 25 30 34 34 29 20 25 25 20 29 34 29 20 30 30 34 34 25 30 [151] 30 30 25 30 34 20 29 25 30 30 25 29 25 34 25 20 34 20 20 29 25 20 29 30 25 [176] 25 25 20 29 30 29 25 29 34 29 25 29 30 20 34 29 25 29 29 34 29 25 25 25 30
Example 4
To create a random sample by ignoring the missing values in an R vector, use the command given below −
x4<-c(NA,rpois(10,500)) sample(x4[!is.na(x4)],200,replace=TRUE)
Output
If you execute the above given command, it generates the following Output −
[1] 489 490 495 501 520 479 489 495 479 511 489 495 479 521 501 490 520 521 [19] 479 492 479 511 501 489 511 495 501 501 501 511 490 511 521 520 479 520 [37] 511 521 521 511 489 501 492 520 492 479 489 520 479 492 479 495 501 492 [55] 511 479 501 492 495 479 520 492 521 489 520 520 479 521 479 501 520 511 [73] 520 492 520 501 492 521 501 489 521 495 495 520 501 479 489 479 490 501 [91] 495 520 479 501 511 511 479 521 501 490 511 511 501 520 479 520 501 501 [109] 520 511 520 479 520 521 520 492 490 479 501 479 501 489 511 521 479 520 [127] 501 479 501 495 521 495 501 490 489 479 501 492 489 521 520 511 511 489 [145] 489 495 479 521 501 489 492 521 495 489 521 520 495 490 490 495 490 479 [163] 520 479 492 521 490 520 495 511 479 495 495 495 479 511 501 479 511 489 [181] 520 495 490 492 492 492 492 520 520 479 489 490 492 479 501 490 495 520 [199] 495 479
Example 5
To create a random sample by ignoring the missing values in an R vector, use the command given below −
x5<-c(NA,runif(10,5,10)) sample(x5[!is.na(x5)],100,replace=TRUE)
Output
If you execute the above given command, it generates the following Output −
[1] 7.617784 5.474288 5.461393 5.461393 9.459706 6.447721 8.498105 9.459706 [9] 7.617784 6.004828 7.004422 7.004422 7.617784 7.617784 9.459706 5.118856 [17] 6.447721 7.004422 7.004422 6.004828 9.459706 6.447721 8.498105 7.004422 [25] 7.004422 8.498105 6.447721 6.004828 9.459706 9.459706 5.474288 7.617784 [33] 5.461393 6.004828 7.617784 9.459706 8.498105 7.004422 7.004422 6.447721 [41] 5.474288 5.039730 6.004828 6.004828 7.004422 6.004828 5.118856 5.039730 [49] 5.118856 7.617784 7.004422 5.039730 6.004828 9.459706 7.004422 5.474288 [57] 6.447721 7.617784 5.474288 9.459706 5.461393 5.039730 5.461393 5.039730 [65] 7.617784 7.617784 5.039730 5.461393 6.004828 5.039730 5.461393 5.118856 [73] 6.447721 5.474288 6.447721 6.447721 5.474288 5.118856 5.039730 5.474288 [81] 5.474288 7.617784 5.461393 9.459706 5.039730 7.617784 5.461393 5.461393 [89] 9.459706 6.447721 6.004828 8.498105 7.004422 5.039730 6.004828 8.498105 [97] 8.498105 6.447721 7.004422 9.459706