
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Implement Booth's Multiplication Algorithm in C++
Booth’s algorithm is a multiplication algorithm that multiplies two signed binary numbers in 2’s compliment notation. Booth used desk calculators that were faster at shifting than adding and created the algorithm to increase their speed.
Algorithm
Begin Put multiplicand in BR and multiplier in QR and then the algorithm works as per the following conditions: 1. If Qn and Qn+1 are same i.e. 00 or 11 perform arithmetic shift by 1 bit. 2. If Qn Qn+1 = 10 do A= A + BR and perform arithmetic shift by 1 bit. 3. If Qn Qn+1 = 01 do A= A – BR and perform arithmetic shift by 1 bit. End
Example Code
#include<iostream> using namespace std; void add(int a[], int x[], int q); void complement(int a[], int n) { int i; int x[8] = { NULL }; x[0] = 1; for (i = 0; i < n; i++) { a[i] = (a[i] + 1) % 2; } add(a, x, n); } void add(int ac[], int x[], int q) { int i, c = 0; for (i = 0; i < q; i++) { ac[i] = ac[i] + x[i] + c; if (ac[i] > 1) { ac[i] = ac[i] % 2; c = 1; }else c = 0; } } void ashr(int ac[], int qr[], int &qn, int q) { int temp, i; temp = ac[0]; qn = qr[0]; cout << "\t\tashr\t\t"; for (i = 0; i < q - 1; i++) { ac[i] = ac[i + 1]; qr[i] = qr[i + 1]; } qr[q - 1] = temp; } void display(int ac[], int qr[], int qrn) { int i; for (i = qrn - 1; i >= 0; i--) cout << ac[i]; cout << " "; for (i = qrn - 1; i >= 0; i--) cout << qr[i]; } int main(int argc, char **argv) { int mt[10], br[10], qr[10], sc, ac[10] = { 0 }; int brn, qrn, i, qn, temp; cout << "\n--Enter the multiplicand and multipier in signed 2's complement form if negative--"; cout << "\n Number of multiplicand bit="; cin >> brn; cout << "\nmultiplicand="; for (i = brn - 1; i >= 0; i--) cin >> br[i]; //multiplicand for (i = brn - 1; i >= 0; i--) mt[i] = br[i]; complement(mt, brn); cout << "\nNo. of multiplier bit="; cin >> qrn; sc = qrn; cout << "Multiplier="; for (i = qrn - 1; i >= 0; i--) cin >> qr[i]; qn = 0; temp = 0; cout << "qn\tq[n+1]\t\tBR\t\tAC\tQR\t\tsc\n"; cout << "\t\t\tinitial\t\t"; display(ac, qr, qrn); cout << "\t\t" << sc << "\n"; while (sc != 0) { cout << qr[0] << "\t" << qn; if ((qn + qr[0]) == 1) { if (temp == 0) { add(ac, mt, qrn); cout << "\t\tsubtracting BR\t"; for (i = qrn - 1; i >= 0; i--) cout << ac[i]; temp = 1; } else if (temp == 1) { add(ac, br, qrn); cout << "\t\tadding BR\t"; for (i = qrn - 1; i >= 0; i--) cout << ac[i]; temp = 0; } cout << "\n\t"; ashr(ac, qr, qn, qrn); } else if (qn - qr[0] == 0) ashr(ac, qr, qn, qrn); display(ac, qr, qrn); cout << "\t"; sc--; cout << "\t" << sc << "\n"; } cout << "Result="; display(ac, qr, qrn); }
Output
--Enter the multiplicand and multipier in signed 2's complement form if negative-- Number of multiplicand bit=5 multiplicand=0 1 1 1 1 No. of multiplier bit=5 Multiplier=1 0 1 1 1 qn q[n+1] BR AC QR sc initial 00000 10111 5 1 0 subtracting BR 10001 ashr 11000 11011 4 1 1 ashr 11100 01101 3 1 1 ashr 11110 00110 2 0 1 adding BR 01101 ashr 00110 10011 1 1 0 subtracting BR 10111 ashr 11011 11001 0 Result=11011 11001
Advertisements