
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Add Elements to Array Until Each Element is Greater Than or Equal to K
We have array of unsorted element i.e. arr[] and have an integer K, and we have to find the minimum number of steps needed in which the elements of the array will be added to make all the elements greater than or equal to K. We can add two elements of array and make them one.
Example,
Input: arr[] = {1 10 12 9 2 3},K = 6 Output: 2
Explanation
First we can add (1 + 2), so the new array is 3 10 12 9 3, we can add (3 + 3), So the new array is 6 10 12 9, we can know that all the elements in the list are greater than 6. Hence the output is
2 i:e 2 operations are required to do this.
Example
#include <bits/stdc++.h> using namespace std; class MinHeap { int *harr; int capacity; int heap_size; public: MinHeap(int *arr, int capacity); void heapify(int ); int parent(int i) { return (i-1)/2; } int left(int i) { return (2*i + 1); } int right(int i) { return (2*i + 2); } int extractMin(); int getMin() { return harr[0]; } int getSize() { return heap_size; } void insertKey(int k); }; MinHeap::MinHeap(int arr[], int n) { heap_size = n; capacity = n; harr = new int[n]; for (int i=0; i<n; i++) harr[i] = arr[i]; for (int i=n/2-1; i>=0; i--) heapify(i); } void MinHeap::insertKey(int k) { heap_size++; int i = heap_size - 1; harr[i] = k; while (i != 0 && harr[parent(i)] > harr[i]) { swap(harr[i], harr[parent(i)]); i = parent(i); } } int MinHeap::extractMin() { if (heap_size <= 0) return INT_MAX; if (heap_size == 1) { heap_size--; return harr[0]; } int root = harr[0]; harr[0] = harr[heap_size-1]; heap_size--; heapify(0); return root; } void MinHeap::heapify(int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heap_size && harr[l] < harr[i]) smallest = l; if (r < heap_size && harr[r] < harr[smallest]) smallest = r; if (smallest != i) { swap(harr[i], harr[smallest]); heapify(smallest); } } int countMinOps(int arr[], int n, int k) { MinHeap h(arr, n); long int res = 0; while (h.getMin() < k) { if (h.getSize() == 1) return -1; int first = h.extractMin(); int second = h.extractMin(); h.insertKey(first + second); res++; } return res; } int main() { int arr[] = {1, 10, 12, 9, 2, 3}; int n = sizeof(arr)/sizeof(arr[0]); int k = 6; cout << countMinOps(arr, n, k); return 0; }
Output
2
Advertisements