
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Convex Hull Graham Scan in C++
In this tutorial, we will be discussing a program to find the convex hull of a given set of points.
Convex hull is the smallest polygon convex figure containing all the given points either on the boundary on inside the figure.
In Graham Scan, firstly the pointes are sorted to get to the bottommost point. Then the points are traversed in order and discarded or accepted to be on the boundary on the basis of their order.
Example
#include <iostream> #include <stack> #include <stdlib.h> using namespace std; struct Point{ int x, y; }; //point reference for sorting other points Point p0; //moving to the next top in stack Point nextToTop(stack<Point> &S){ Point p = S.top(); S.pop(); Point res = S.top(); S.push(p); return res; } //swapping two points int swap(Point &p1, Point &p2){ Point temp = p1; p1 = p2; p2 = temp; } //calculating the square of difference int distSq(Point p1, Point p2){ return (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y); } //checking the orientation of points int orientation(Point p, Point q, Point r){ int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); if (val == 0) return 0; return (val > 0)? 1: 2; } //sorting and comparing the points int compare(const void *vp1, const void *vp2){ Point *p1 = (Point *)vp1; Point *p2 = (Point *)vp2; int o = orientation(p0, *p1, *p2); if (o == 0) return (distSq(p0, *p2) >= distSq(p0, *p1))? -1 : 1; return (o == 2)? -1: 1; } //printing convex hull void convexHull(Point points[], int n){ int ymin = points[0].y, min = 0; for (int i = 1; i < n; i++){ int y = points[i].y; if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) ymin = points[i].y, min = i; } swap(points[0], points[min]); p0 = points[0]; qsort(&points[1], n-1, sizeof(Point), compare); for (int i=1; i<n; i++){ while (i < n-1 && orientation(p0, points[i], points[i+1]) == 0) i++; points[m] = points[i]; m++; //updating size of modified array } if (m < 3) return; stack<Point> S; S.push(points[0]); S.push(points[1]); S.push(points[2]); for (int i = 3; i < m; i++){ while (orientation(nextToTop(S), S.top(), points[i]) != 2) S.pop(); S.push(points[i]); } while (!S.empty()){ Point p = S.top(); cout << "(" << p.x << ", " << p.y <<")" << endl; S.pop(); } } int main(){ Point points[] = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}}; int n = sizeof(points)/sizeof(points[0]); convexHull(points, n); return 0; }
Output
(0, 3) (4, 4) (3, 1) (0, 0)
Advertisements