
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compute the Tensor Dot Product in Python
Given two tensors, a and b, and an array_like object containing two array_like objects, (a_axes, b_axes), sum the products of a’s and b’s elements (components) over the axes specified by a_axes and b_axes. The third argument can be a single non-negative integer_like scalar, N; if it is such, then the last N dimensions of a and the first N dimensions of b are summed over.
To compute the tensor dot product, use the numpy.tensordot() method in Python. The a, b parameters are Tensors to “dot”. The axes parameter, integer_like If an int N, sum over the last N axes of a and the first N axes of b in order. The sizes of the corresponding axes must match.
Steps
At first, import the required libraries −
import numpy as np
Creating two numpy 3D arrays using the array() method −
arr1 = np.arange(60.).reshape(3,4,5) arr2 = np.arange(24.).reshape(4,3,2)
Display the arrays −
print("Array1...\n",arr1) print("\nArray2...\n",arr2)
Check the Dimensions of both the arrays −
print("\nDimensions of Array1...\n",arr1.ndim) print("\nDimensions of Array2...\n",arr2.ndim)
Check the Shape of both the arrays −
print("\nShape of Array1...\n",arr1.shape) print("\nShape of Array2...\n",arr2.shape)
To compute the tensor dot product, use the numpy.tensordot() method in Python. The a, b parameters are Tensors to “dot” −
print("\nTensor dot product...\n", np.tensordot(arr1,arr2, axes=([1,0],[0,1])))
Example
import numpy as np # Creating two numpy 3D arrays using the array() method arr1 = np.arange(60.).reshape(3,4,5) arr2 = np.arange(24.).reshape(4,3,2) # Display the arrays print("Array1...\n",arr1) print("\nArray2...\n",arr2) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",arr1.ndim) print("\nDimensions of Array2...\n",arr2.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",arr1.shape) print("\nShape of Array2...\n",arr2.shape) # To compute the tensor dot product, use the numpy.tensordot() method in Python # The a, b parameters are Tensors to “dot”. print("\nTensor dot product...\n", np.tensordot(arr1,arr2, axes=([1,0],[0,1])))
Output
Array1... [[[ 0. 1. 2. 3. 4.] [ 5. 6. 7. 8. 9.] [10. 11. 12. 13. 14.] [15. 16. 17. 18. 19.]] [[20. 21. 22. 23. 24.] [25. 26. 27. 28. 29.] [30. 31. 32. 33. 34.] [35. 36. 37. 38. 39.]] [[40. 41. 42. 43. 44.] [45. 46. 47. 48. 49.] [50. 51. 52. 53. 54.] [55. 56. 57. 58. 59.]]] Array2... [[[ 0. 1.] [ 2. 3.] [ 4. 5.]] [[ 6. 7.] [ 8. 9.] [10. 11.]] [[12. 13.] [14. 15.] [16. 17.]] [[18. 19.] [20. 21.] [22. 23.]]] Dimensions of Array1... 3 Dimensions of Array2... 3 Shape of Array1... (3, 4, 5) Shape of Array2... (4, 3, 2) Tensor dot product... [[4400. 4730.] [4532. 4874.] [4664. 5018.] [4796. 5162.] [4928. 5306.]]