
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 1034 Articles for Matplotlib

354 Views
The Axes class contains most of the figure elements − Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system.stepsSet the figure size and adjust the padding between and around the subplots.Set the axes linewidth using rcParams.Add an axes to the current figure and make it the current axes.Set the axes spines color.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True plt.rcParams['axes.linewidth'] = 5 ax = plt.axes() ax.spines['bottom'].set_color('yellow') ax.spines['top'].set_color('red') ax.spines['right'].set_color('black') ax.spines['left'].set_color('blue') plt.show()OutputRead More

8K+ Views
To visualize 95% confidence interval in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create x and y data sets.Get the confidence interval dataset.Plot the x and y data points using plot() method.Fill the area within the confidence interval range.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.arange(0, 10, 0.05) y = np.sin(x) # Define the confidence interval ci = 0.1 * np.std(y) / np.mean(y) plt.plot(x, y, color='black', ... Read More

5K+ Views
To plot an imshow() image in 3D in Matplotlib, we can take the following steps −Create xx and yy data points using numpy.Get the data (2D) using X, Y and Z.Create a new figure or activate an existing figure using figure() method.Add an 'ax1' to the figure as part of a subplot arrangement.Display the data as an image, i.e., on a 2D regular raster with data.Add an 'ax2' to the figure as part of a subplot arrangement.Create and store a set of contour lines or filled regions.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np ... Read More

1K+ Views
To add extra contour lines using Matplotlib 2D contour plotting, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create e a function f(x, y) to get the z data points from x and y.Create x and y data points using numpy.Make a list of levels using Numpy.Make a contour plot using contour() method.Label the contour plot and set the title of the plot.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True def f(x, y): return ... Read More

8K+ Views
To remove the digits after the decimal point in axis ticks in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create x and y data points using numpy.Create a figure and a set of subplots.To set the xtick labels only in digits, we can use x.astype(int) method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.array([1.110, 2.110, 4.110, 5.901, 6.00, 7.90, 8.90]) y = np.array([2.110, 1.110, 3.110, 9.00, 4.001, 2.095, 5.890]) fig, ... Read More

5K+ Views
To set the unit length of an axis in Matplotlib, we can use xlim or ylim with scale factor of the axes, i.e., of unit length times.stepsSet the figure size and adjust the padding between and around the subplots.Create x and y data points using numpy.Plot the x and y data points using plot() method.Get the x and y axes, limit range.Use xlim and ylim methods to set the unit length scale.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(1, 10, 100) y ... Read More

858 Views
To hide major tick labels while showing minor ticklabels in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create x and y data points using numpy.Plot the x and y data points.Set a property on an artist object, using setp() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(1, 10, 100) y = np.log(x) plt.plot(x, y) plt.setp(plt.gca().get_xmajorticklabels(), visible=False) plt.show()OutputRead More

969 Views
To mark a specific level in a contour map on Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create x, y and z data points using Numpy.Use contour() method to make contour plot.Label the contour plot.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True def f(x, y): return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) x = np.linspace(0, 5, 50) y = np.linspace(0, 5, 40) X, Y = ... Read More

3K+ Views
To label a patch in matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Initialize the center of the rectangle patch.Create a new figure or activate an existing figure.Add an 'ax' to the figure as part of a subplot arrangement.Add a 'rectangle' to the axes' patches; return the patch.Place a legend on the figure.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import matplotlib.patches as patches plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = y = 0.1 fig = plt.figure() ax = fig.add_subplot(111) patch = ... Read More

15K+ Views
To sort bars in a bar plot in ascending order, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Make a list of data for bar plots.Create a bar plot using bar() method, with sorted data.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True data = [3, 5, 9, 15, 12] plt.bar(range(len(data)), sorted(data), color='red', alpha=0.5) plt.show()Output