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Summary

Automated speaker identification is a modeling challenge for research when large-scale corpora,
such as audio recordings or transcripts, are relied upon for evidence (e.g. Journalism, Qualitative
Research, Law, etc.). To address current difficulties in training speaker identification models,
we propose Speakerbox: a method for few-shot fine-tuning of an audio transformer. Specifically,
Speakerbox makes multi-recording, multi-speaker identification model fine-tuning as simple
as possible while still fitting an accurate, useful model for application. Speakerbox works
by ensuring data are safely stratified by speaker id and held-out by recording id prior to
fine-tuning of a pretrained speaker identification Transformer on a small number of audio
examples. We show that with less than an hour of audio-recorded input, Speakerbox can
fine-tune a multi-speaker identification model for use in assisting researchers in audio and
transcript annotation.

Statement of Need

Speaker-annotated transcripts from audio recordings are an increasingly important applied
research problem in natural language processing. For example, speaker-annotated audio and
transcript data has previously been used to create comprehensive analyses of conversation
dynamics (Jacobi & Schweers, 2017; Maltzman & Sigelman, 1996; Miller & Sutherland, 2022;
Morris, 2001; Osborn & Mendez, 2010; Slapin & Kirkland, 2020). However, multi-speaker
audio classification models (for the purpose of speaker identification) can be cumbersome and
expensive to train and unwieldy to apply. Speaker diarization is, “the unsupervised identification
of each speaker within an audio stream and the intervals during which each speaker is active”
(Anguera et al., 2012). Diarization is a useful method in certain applications of large-scale
automated analysis and there are free tools available to perform these tasks (e.g. Bredin et al.,
2020; Bredin & Laurent, 2021). However, due to it's unsupervised nature, diarization may
inconsistently label speakers across different audio recordings. As such, diarization may not
adequately meet the needs for research purposes depending upon the identification of speakers
(e.g. Journalism, Qualitative Research, Law, etc.).

Speakerbox is built with the goal of making multi-recording, multi-speaker identification model
training as simple as possible while still attempting to help train an accurate, useful model for
application (e.g. a set of recordings where each recording has some subset of a set of speakers).

To this end Speakerbox provides functionality to:

1. Create or import annotation sets;

2. Prepare an audio dataset into stratified and held-out, train, test, and validation subsets;
3. Train and evaluate a fine-tuned speaker identification model; and,

4. Apply a speaker identification model to an audio file.
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Related Work

While there is continuous research in new methods and model architectures for few-shot speaker
identification models (Kumar et al., 2020; Li et al., 2022; Wolters et al., 2020), there exists
little work in creating an open-source, easy-to-use library for their training and evaluation.

For more general speech processing and filtering, SpeechPy is an open-source solution for
“speech processing and feature extraction .. [by providing the] most frequent used speech
features including MFCCs and filterbank energies” (Torfi, 2018).

Open-source libraries more closely related to diarization and speaker identification include
Pyannote.Audio and Transformers. Pyannote.Audio “provides a set of trainable end-to-end
neural building blocks that can be combined and jointly optimized to build speaker diarization
pipelines” (Bredin et al., 2020; Bredin & Laurent, 2021). While Transformers is a library which
“provides thousands of pretrained models to perform tasks on different modalities such as text,
vision, and audio” (Wolf et al., 2020). Speakerbox makes use of both pyannote.audio and
transformers.

Speaker diarization (provided by pyannote.audio) is the unsupervised process of splitting audio
into segments grouped by speaker identity. Speakerbox in comparison, provides functionality
to train a model for speaker indentification, the supervised process of splitting audio into
segments and identifying them as a known speaker.

The Transformer architecture was originally introduced by Vaswani, et al. for use in sequence-to-
sequence machine learning tasks such as machine translation (Vaswani et al., 2017). However,
there are now many researchers creating or fine-tuning Transformer-based models to suit
there own needs. The transformers library provided by HuggingFace is one such library that
provides an API for downloading, using, and/or fine-tuning Transformer-based models. In our
case, Speakerbox utilizes the transformers library to fine-tune a speaker identification model
made available by the HuggingFace platform.

There are also paid solutions for quickly annotating and training a custom speaker diarization
and audio classification model such as ExplosionAl's Prodigy Platform.

Finally, SetFit (“an efficient and prompt-free framework for few-shot fine-tuning of Sentence
Transformers”) provides similar functionality as Speakerbox but for text-based data (Tunstall
et al., 2022).

Speakerbox brings many of these tools together in order to be a solution for speaker identification
as an easy-to-use and open-source library for the annotation of audio data and the fine-tuning
of a speaker identification model.

Functionality

Speakerbox attempts to simplify transformer fine-tuning by making the following processes
easier:

= Creation of a dataset via diarization;

= Import of a dataset from existing annotation platforms;

= Preparation of train, test, and validation subsets protected from speaker and recording
data leakage;

= Fine-tuning and evaluation of a transformer; and,

= Application of a trained model across an audio file
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from speakerbox import preprocess, train, eval_model

Original Audio Data

example-training-data/
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——2.wav

—— 3.wav

—— 4.wav

L—5.wav

\ Diarize each audio file

from speakerbox import preprocess
from pathlib import Path

# Get all the audio files in example-training-data dir
audio_files = list(Path("example-training-data").glob("*.wav"))

for audio_file in audio_files:
diarized_and_split_audio_dir = preprocess.diarize_and_split_audio(

audio_file,

# The token can also be provided via

# the 'HUGGINGFACE_TOKEN' environment variable.
hf_token="token-from-hugging-face",

'0.wav' diarization outputs
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Preprocess the data,
train a new model,
evaluate the new model.

dataset = preprocess.expand_labeled_diarized_audio_dir_to_dataset(
labeled_diarized_audio_dir=[

"0/", # The cleaned and checked audio clips for recording id @

)

ny/m,
wa/m
ng/n,
e
s/

E

. recording id 1
.. recording id 2
.. recording id 3
.. recording id 4
. recording id 5

dataset_dict, value_counts = preprocess.prepare_dataset(

dataset,

# good if you have large variation in number of data points for each label
equalize_data_within_splits=True,
# set seed to get a reproducible data split

seed=60,

# value_counts is a dataframe which stores the counts for each label

# in each split of the data

print(value_counts)

train(dataset_dict)

eval_model(dataset_dict["valid"])

Figure 1: Typical workflow to prepare a speaker identification dataset and fine-tune a new model using
tools provided from the Speakerbox library. The user starts with a collection of audio files that include
portions speech from the speakers they want to train a model to identify. The diarize_and_split_audio
function will create a new directory with the same name as the audio file, diarize the audio file, and
finally, sort the audio portions produced from diarization into sub-directories within this new directory.
The user should then manually rename each of the produced sub-directories to the correct speaker
identifier (i.e. the speaker's name or a unique id) and additionally remove any incorrectly diarized or
mislabeled portions of audio. Finally, the user can prepare training, evaluation, and testing datasets
(via the expand_labeled_diarized_audio_dir_to_dataset and preprocess_dataset functions) and

fine-tune a new speaker identification model (via the tratin function).
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The goal of this library is to simplify these proceses while maintaining fidelity in the training
and utility of a speaker identification model for application.

Dataset Generation and Import

Diarization

Diarization is the unsupervised process of splitting audio into segments grouped by speaker
identity. The output of a diarization model is usually a random ID (e.g. “speaker_0",
“speaker_1", etc.) where there is no guarantee that “speaker_0" from a first audio file, is the
same “speaker_0" from a second audio file. Because of this unsupervised nature, diarization
cannot be used as a single solution for multi-speaker, multi-recording speaker identification. It
can however be used for quickly generating large amounts of training examples which can be
validated and labeled for use in a later speaker identification training set.

We make use of diarization as one method for preparing a speaker identification training set by
using a model provided by pyannote.audio to diarize an audio file and place the unlabeled
portions of audio into directories on the user's file system. A user can then listen to a few
or all of the samples of audio in each directory, remove any samples that were mis-classified,
and finally rename each of the directories with a true and consistent speaker identifier (e.g. a
name, database ID, etc.).

Using Gecko Annotations

If a fully supervised method for dataset generation is preferred, or to improve model accuracy
and improve coverage of edge cases, users of Speakerbox may use Gecko: a free web application
for manual segmentation of audio files by speaker as well as annotation of the linguistic content
of a conversation (Golan Levy, 2019). Speakerbox can make use of Gecko annotations as a
method for training set creation by providing functions to split and prepare audio files using
the annotations stored in a Gecko created JSON file.

Preparation for Model Training and Evaluation

To ensure that a Speakerbox model is learning the features of each speaker’s voice (and not
the features of the microphone or the specific words and phrases of each recording) we create
dataset training, test, and evaluation subsets based off of a recording holdout and speaker
stratification pattern. Each train, test, and evaluation subset must contain unique recording
IDs to reduce the chance of learning the features of specific microphones or recording contexts,
and each produced subset must contain recordings of every speaker available from the whole
dataset. For example, if there are nine unique speakers in the complete dataset, then each
train, test, and evaluation subset is required to have examples of all nine speakers.

If these recording holdout and speaker stratification conditions are not met, Speakerbox
iteratively retries this random sampling process again. If the sampling function cannot find a
valid dataset configuration given the sampling iterations, we inform the user of this failure and
prompt them to add more examples to the dataset.

Model Fine-Tuning

The Speakerbox training process consists of fine-tuning a pre-trained speaker identification
model (Yang et al., 2021) provided by Huggingface's Transformers library (Wolf et al., 2020).
The default model for fine-tuning (superb/wav2vec2-base-superb-sid) was pre-trained on the
VoxCelebl dataset (Nagrani et al., 2017).

As Speakerbox is a framework for fine-tuning a pre-trained speaker identification transformer,
we will not cover the original evaluation of the model but instead, provide details about what
we believe is a more typical use case for a fine-tuned speaker identification model.
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Our example dataset contains 9 unique speakers across 10 unique recordings and each recording
has some or all of the 9 unique speakers for a total of 1 hour of audio. For our use case in
computational social science, this dataset represents a typical audio (and transcript) dataset
created from government meetings, 1-on-1 interviews, group interviews, etc.

We further created random samples of this dataset with 15 minutes and 30 minutes of audio
(each then split between the train, test, and evaluation subsets). The results reported in Table
1 are the mean accuracy, precision, and recall of five iterations of model training and evaluation
using the differently sized datasets as inputs to our train and eval_model functions.

mean__accu- mean__preci- mean__training_dura-

dataset_size racy sion mean_recall tion_seconds

15-minutes 0.874 = 0.881 4+ 0.037 0.874 + 101 +£1
0.029 0.029

30-minutes 0.929 + 0.94 + 0.007 0.929 + 186 + 3
0.006 0.006

60-minutes 0.937 + 0.02 0.94 £+ 0.017 0.937 + 453 £ 7
0.02

All results reported are the average of five model training and evaluation trials for each of the
different dataset sizes. All models were fine-tuned using an NVIDIA GTX 1070 TI.

We provide a method to reproduce these models by downloading the example dataset unzipping
its contents and then running:

from speakerbox.examples import train_and_eval_all_example_models

results = train_and_eval_all_example_models(
"/your/path/to/the/unzipped/example-data/",

Usage in Existing Research

We are utilizing Speakerbox-trained models to annotate municipal council meeting transcripts
provided by the Council Data Project (Brown et al., 2021). In our initial research, we first
annotated ~10 hours of audio using the Gecko platform in ~12 hours of time, we then used our
diarization and labeling method to annotate an additional ~21 hours of audio in ~6 hours of
time. In total, the dataset was annotated and compiled in less than ~18 hours and contained
~31 hours of audio from meetings of the Seattle City Council (Eva & Weber, 2022). The model
trained from the annotated dataset with the best precision and recall achieved 0.977 and 0.976
respectively. We additionally have used this model to annotate ~200 audio-aligned transcripts
of Seattle City Council meetings and are now conducting analysis of speaker behaviors and
group dynamics in such meetings.

Future Work

The few-shot approach we have described in Speakerbox can be extended, and made more
accessible in future work. This could include:

1. The creation of a GUI for dataset preparation, training, and application: GUIs developed
with Python have become much more accessible in recent years with tools such as
MagicGUI being developed. A GUI would likely help non-computational scientists more
easily train their own fine-tuned Speakerbox models.
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2. The creation of a template repository to assist in the “productization” of Speakerbox
models: The construction of a “template” or “cookiecutter” (Greenfeld et al., 2015)
repository may also be useful. A template repository may provide a standard configuration
for the storage and versioning of the training data and the management of model training
and evaluation via continuous integration. We plan to create and embed a similar system
within Council Data Project (CDP) infrastructures to enable the transparent training of
speaker identification models specific to each municipal council. In our case, we plan to
have a continuous integration system attempt to train a new model when new training
data is added to the infrastructure repository. If the trained model reaches an accuracy
threshold, we plan to store this model on our remote storage system. This model would
then be used to annotate transcripts with their speakers during the processing of each
municipal meeting.
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