
Opfi: A Python package for identifying gene clusters in
large genomics and metagenomics data sets
Alexis M. Hill∗1, James R. Rybarski†2, Kuang Hu1,2, Ilya J.
Finkelstein2,3, and Claus O. Wilke1

1 Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, USA
2 Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712,
USA 3 Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas,
78712, USA

DOI: 10.21105/joss.03678

Software
• Review
• Repository
• Archive

Editor: Charlotte Soneson
Reviewers:

• @Thomieh73
• @afrubin

Submitted: 20 August 2021
Published: 27 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Gene clusters are sets of co-localized, often contiguous genes that together perform specific
functions, many of which are relevant to biotechnology. There is a need for software tools that
can extract candidate gene clusters from vast amounts of available genomic data. Therefore,
we developed Opfi: a modular pipeline for identification of arbitrary gene clusters in assembled
genomic or metagenomic sequences. Opfi contains functions for annotation, de-deduplication,
and visualization of putative gene clusters. It utilizes a customizable rule-based filtering
approach for selection of candidate systems that adhere to user-defined criteria. Opfi is
implemented in Python, and is available on the Python Package Index and on Bioconda
(Grüning et al., 2018).

Statement of need

Gene clusters have been successfully repurposed for a number of biotechnical applications,
including biofuel production, organic compound synthesis, and gene editing (Fischbach &
Voigt, 2010). Despite the broad utility of known gene clusters, identification of novel gene
clusters remains a challenging task. While there are many tools available for annotation
of singular genes (or protein domains) in biological sequence data (Buchfink et al., 2021;
Camacho et al., 2009; Steinegger & Söding, 2017), these programs do not identify whole
gene clusters out of the box. In many cases, researchers must combine bioinformatics tools
ad hoc, resulting in one-off pipelines that can be difficult to reproduce. Several software
packages have been developed for the discovery of specific types of gene clusters (Blin et
al., 2019; Santos-Aberturas et al., 2019; van Heel et al., 2018), but these tools may not be
sufficiently flexible to identify clusters of an arbitrary genomic composition. To address these
gaps, we developed a modular pipeline that integrates multiple bioinformatics tools, providing
a flexible, uniform computational framework for identification of arbitrary gene clusters. In
a recent study, we used Opfi to uncover novel CRISPR-associated transposons (CASTs) in a
large metagenomics dataset (Rybarski et al., 2021).

∗co-first author, corresponding author
†co-first author

Hill et al., (2021). Opfi: A Python package for identifying gene clusters in large genomics and metagenomics data sets. Journal of Open Source
Software, 6(66), 3678. https://doi.org/10.21105/joss.03678

1

https://doi.org/10.21105/joss.03678
https://github.com/openjournals/joss-reviews/issues/3678
https://github.com/wilkelab/Opfi
https://doi.org/10.5281/zenodo.5601741
http://csoneson.github.io/
https://github.com/Thomieh73
https://github.com/afrubin
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03678


Implementation

Opfi is implemented in Python, and uses several bioinformatics tools for feature annotation
(Buchfink et al., 2021; Camacho et al., 2009; Edgar, 2007; Shi & Liang, 2019; Steinegger &
Söding, 2017). Users can install Opfi and all of its dependencies through Bioconda (Grüning
et al., 2018). Opfi consists of two major components: Gene Finder, for discovery of gene
clusters, and Operon Analyzer, for rule-based filtering, deduplication, and visualization of
gene clusters identified by Gene Finder. All modules generate output in a comma-separated
(CSV) format that is common to the entire package.

Example Gene Finder usage

The following example script searches for putative CRISPR-Cas loci in the genome of Rippkaea
orientalis PCC 8802. Information about the biological significance of this example, as well
as data inputs and descriptions, can be found in the tutorials directory in the project
GitHub repository. The example illustrates the use of the Pipeline class for setting up a
gene cluster search. First, add_seed_step specifies a step to annotate cas1 genes, using
protein BLAST (BLASTP) (Camacho et al., 2009) and a database of representative Cas1
protein sequences. 10,000 bp regions directly up- and downstream of each putative cas1 gene
are selected for further analysis, and all other regions are discarded. Next, add_filter_step
adds a step to annotate candidate regions for additonal cas genes. Candidates that do not
have at least one additional cas gene are discarded from the master list of putative systems.
Finally, add_crispr_step adds a step to search remaining candidates for CRISPR arrays,
i.e. regions of alternating ~30 bp direct repeat and variable sequences, using the PILER-CR
repeat finding software (Edgar, 2007).

from gene_finder.pipeline import Pipeline
import os

genomic_data = "GCF_000024045.1_ASM2404v1_genomic.fna.gz"
job_id = "r_orientalis"

p = Pipeline()
p.add_seed_step(db="cas1", name="cas1", e_val=0.001, blast_type="PROT")
p.add_filter_step(db="cas_all", name="cas", e_val=0.001, blast_type="PROT")
p.add_crispr_step()

p.run(job_id=job_id, data=genomic_data, span=10000, gzip=True)

Running this code creates the CSV file r_orientalis_results.csv, which contains in-
formation about each system identified; in this example, that is two canonical CRISPR-Cas
systems, and one locus with weak homology to cas genes. Each line in the file represents a
single putative feature in a candidate locus. Features from the same candidate are grouped
together in the CSV. Detailed information about the output format can be found in the Opfi
documentation.

Example Operon Analyzer usage

In the previous example, passing systems must meet the relatively permissive criterion of having
at least one cas1 gene co-localized with one additional cas gene. This is sufficient to identify
CRISPR-Cas loci, but may also capture regions that do not contain functional CRISPR-Cas
systems, but rather consist of open reading frames (ORFs) with weak homology to cas genes.

Hill et al., (2021). Opfi: A Python package for identifying gene clusters in large genomics and metagenomics data sets. Journal of Open Source
Software, 6(66), 3678. https://doi.org/10.21105/joss.03678

2

https://opfi.readthedocs.io/
https://doi.org/10.21105/joss.03678


These improbable systems could be eliminated during the homology search by making the
match acceptance threshold more restrictive (i.e., by decreasing the e-value), however, this
could result in the loss of interesting, highly diverged systems. Therefore, we implemented a
module that enables post-homology search filtering of candidate systems, using flexible rules
that can be combined to create sophisticated elimination functions. This allows the user to
first perform a broad homology search with permissive parameters, and then apply rules to cull
unlikely candidates without losing interesting and/or novel systems. Additionally, rules may be
useful for selecting candidates with a specific genomic composition for downstream analysis.
It should be noted that the use of the term “operon” throughout this library is an artifact
from early development of Opfi. At this time, Opfi does not predict whether a candidate
system represents a true operon, that is, a set of genes under the control of a single promoter.
Although a candidate gene cluster may certainly qualify as an operon, it is currently up to the
user to make that distinction.
Rule-based filtering is illustrated with the following example. The sample script takes the
output generated by the previous example and reconstructs each system as an Operon object.
Next, the RuleSet class is used to assess each candidate; here, passing systems must contain
two cascade genes (cas5 and cas7) no more than 1000 bp apart, and at least one cas3
(effector) gene. For a complete list of rules, see the Opfi documentation.

from operon_analyzer import analyze, rules

rs = rules.RuleSet()
rs.contains_group(["cas5", "cas7"], max_gap_distance_bp = 1000)
rs.require("cas3"))

with open("r_orientalis_results.csv", "r") as input_csv:
with open("filtered_output.csv", "w") as output_csv:

analyze.evaluate_rules_and_reserialize(input_csv, rs, output_csv)

After running this code, the file filtered_output.csv contains only high-confidence type-I
CRISPR-Cas systems (re-serialized to CSV format) that passed all rules in the rule set.

Candidate visualization

Opfi integrates the DNAFeaturesViewer package (Zulkower & Rosser, 2020) to create gene
diagrams of candidate systems. Each input system is visualized as a single PNG image.
The sample script below reads in output from the previous example, and generates two gene
diagram images, one for each CRISPR-Cas system present in Rippkaea orientalis. One image
is provided for reference in Figure 1.

from operon_analyzer import load, rules, visualize

feature_colors = { "cas1": "lightblue",
"cas2": "seagreen",
"cas3": "gold",
"cas4": "springgreen",
"cas5": "darkred",
"cas6": "thistle",
"cas7": "coral",
"cas8": "red",
"cas9": "palegreen",
"cas10": "blue",
"cas11": "tan",

Hill et al., (2021). Opfi: A Python package for identifying gene clusters in large genomics and metagenomics data sets. Journal of Open Source
Software, 6(66), 3678. https://doi.org/10.21105/joss.03678

3

https://opfi.readthedocs.io/
https://doi.org/10.21105/joss.03678


"cas12": "orange",
"cas13": "saddlebrown",
"CRISPR array": "purple"
}

fs = rules.FilterSet().pick_overlapping_features_by_bit_score(0.9)
with open("filtered_output.csv", "r") as operon_data:

operons = [operon for operon in load.load_operons(operon_data)]
for operon in operons:

fs.evaluate(operon)
visualize.plot_operons(operons, output_directory=".", \

plot_ignored=False, feature_colors=feature_colors)

The FilterSet class is used to resolve features with sequences that overlap by more than
90%. Specifically, only the overlapping feature with the highest bitscore value (a quantity
that describes the overall quality of an alignment) is rendered when pick_overlapping_fea
tures_by_bit_score is applied. Note that is not a requirement for candidate visualization,
but can improve gene diagram clarity.

Figure 1: One of two type-I CRISPR-Cas systems present in the genome of Rippkaea orientalis PCC
8802. Note that the ORF beginning at position ~2500 has homology with both cas1 and cas4. These
alignments have identical bitscores (i.e., the goodness of alignments is quivalent, using this metric), so
both annotations appear in the diagram, even though pick_overlapping_features_by_bit_score
was applied.

Acknowledgements

The authors would like to thank the staff of the Texas Advanced Computing Center for
providing computational resources, and members of the Finkelstein and Wilke labs for helpful
discussions. This work was supported by an NIGMS grant R01GM124141 (to I.J.F.), the
Welch Foundation grant F-1808 (to I.J.F.), NIGMS grant R01 GM088344 (to C.O.W.), and
the College of Natural Sciences Catalyst Award for seed funding.

Hill et al., (2021). Opfi: A Python package for identifying gene clusters in large genomics and metagenomics data sets. Journal of Open Source
Software, 6(66), 3678. https://doi.org/10.21105/joss.03678

4

https://doi.org/10.21105/joss.03678


References

Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber,
T. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline.
Nucleic Acids Research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310

Buchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-
life scale using DIAMOND. Nature Methods, 18(4), 366–368. https://doi.org/10.1038/
s41592-021-01101-x

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden,
T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 421.
https://doi.org/10.1186/1471-2105-10-421

Edgar, R. C. (2007). PILER-CR: Fast and accurate identification of CRISPR repeats. BMC
Bioinformatics, 8(1), 18. https://doi.org/10.1186/1471-2105-8-18

Fischbach, M., & Voigt, C. A. (2010). Prokaryotic gene clusters: A rich toolbox for syn-
thetic biology. Biotechnology Journal, 5(12), 1277–1296. https://doi.org/10.1002/biot.
201000181

Grüning, B., Dale, R., Sjödin, A., Chapman, B., Rowe, J., Tomkins-Tinch, CH., Valieris, R.,
Köster, J., & The Bioconda Team. (2018). Bioconda: sustainable and comprehensive
software distribution for the life sciences. Nature Methods, 15(7), 475–476. https://doi.
org/10.1038/s41592-018-0046-7

Rybarski, J. R., Hu, K., Hill, A. M., Wilke, C. O., & Finkelstein, I. J. (2021). Metagenomic
discovery of CRISPR-associated transposons. bioRxiv. https://doi.org/10.1101/2021.08.
16.456562

Santos-Aberturas, J., Chandra, G., Frattaruolo, L., Lacret, R., Pham, T. H., Vior, N. M.,
Eyles, T. H., & Truman, A. W. (2019). Uncovering the unexplored diversity of thioami-
dated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic
Acids Research, 47(9), 4624–4637. https://doi.org/10.1093/nar/gkz192

Shi, J., & Liang, C. (2019). Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide
De Novo Repeat Detection. Plant Physiology, 180(4), 1803–1815. https://doi.org/10.
1104/pp.19.00386

Steinegger, M., & Söding, J. (2017). MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature Biotechnology, 35(11), 1026–1028. https:
//doi.org/10.1038/nbt.3988

van Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018).
BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic
Acids Research, 46(W1), W278–W281. https://doi.org/10.1093/nar/gky383

Zulkower, V., & Rosser, S. (2020). DNA Features Viewer: a sequence annotation formatting
and plotting library for Python. Bioinformatics, 36(15), 4350–4352. https://doi.org/10.
1093/bioinformatics/btaa213

Hill et al., (2021). Opfi: A Python package for identifying gene clusters in large genomics and metagenomics data sets. Journal of Open Source
Software, 6(66), 3678. https://doi.org/10.21105/joss.03678

5

https://doi.org/10.1093/nar/gkz310
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-8-18
https://doi.org/10.1002/biot.201000181
https://doi.org/10.1002/biot.201000181
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1101/2021.08.16.456562
https://doi.org/10.1101/2021.08.16.456562
https://doi.org/10.1093/nar/gkz192
https://doi.org/10.1104/pp.19.00386
https://doi.org/10.1104/pp.19.00386
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1093/nar/gky383
https://doi.org/10.1093/bioinformatics/btaa213
https://doi.org/10.1093/bioinformatics/btaa213
https://doi.org/10.21105/joss.03678

	Summary
	Statement of need
	Implementation
	Example Gene Finder usage
	Example Operon Analyzer usage
	Candidate visualization

	Acknowledgements
	References

