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Summary

GeophysicalFlows.jl is a Julia (Bezanson et al., 2017) package that contains partial differ-
ential equations solvers for a collection of geophysical fluid systems in periodic domains. All
modules use Fourier-based pseudospectral numerical methods and leverage the framework pro-
vided by the FourierFlows.jl (Constantinou et al., 2021) Julia package for time-stepping,
custom diagnostics, and saving output.

Statement of need

Conceptual models in simple domains often provide stepping stones for better understanding
geophysical and astrophysical systems, particularly the atmospheres and oceans of Earth and
other planets. These conceptual models are used in research but also are of great value for
helping students in class to grasp new concepts and phenomena. Oftentimes people end up
coding their own versions of solvers for the same partial differential equations for research or
classwork. GeophysicalFlows.jl package is designed to be easily utilized and adaptable for
a wide variety of both research and pedagogical purposes.
On top of the above-mentioned needs, the recent explosion of machine-learning applications
in atmospheric and oceanic sciences advocates for the need that solvers for partial differential
equations can be run on GPUs.
GeophysicalFlows.jl provides a collection of modules for solving sets of partial differential
equations often used as conceptual models. These modules are continuously tested (unit tests
and tests for the physics involved) and are well-documented. GeophysicalFlows.jl utilizes
Julia’s functionality and abstraction to enable all modules to run on CPUs or GPUs, and to
provide a high level of customizability within modules. The abstractions allow simulations to
be tailored for specific research questions, via the choice of parameters, domain properties,
and schemes for damping, forcing, time-stepping etc. Simulations can easily be carried out on
different computing architectures. Selection of the architecture on which equations are solved
is done by providing the argument CPU() or GPU() during the construction of a particular
problem.
Documented examples for each geophysical system (module) appear in the package’s doc-
umentation, providing a starting point for new users and for the development of new or
customized modules. Current modules include two-dimensional flow and a variety of quasi-
geostrophic (QG) dynamical systems, which provide analogues to the large-scale dynamics
of atmospheres and oceans. The QG systems currently in GeophysicalFlows.jl extend
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two-dimensional dynamics to include the leading order effects of a third dimension through
planetary rotation, topography, surface boundary conditions, stratification and quasi-two-
dimensional layering. A community-based collection of diagnostics throughout the modules
are used to compute quantities like energy, enstrophy, dissipation, etc.

Figure 1: Potential vorticity snapshots from a nonlinearly equilibrated simulation of the Eady instabil-
ity over a meridional ridge. Simulation used MultiLayerQG module of GeophysicalFlows.jl. The
Eady problem was approximated here using 5 fluid layers stacked up in the vertical. Each layer was
simulated with 512² grid-points. Plots were made with the Plots.jl Julia package, which utilizes
the cmocean colormaps collection (Thyng et al., 2016). Scripts to reproduce the simulation reside in
the repository github.com/FourierFlows/MultilayerQG-example.

State of the field

GeophysicalFlows.jl is a unique Julia package that shares some features and similarities
with other packages. In particular:

• pyqg (Abernathey et al., 2019) (Python)
Beyond their base language, the major differences between GeophysicalFlows.jl
and pyqg is that GeophysicalFlows.jl can be run on GPUs or CPUs and leverages
a separate package (FourierFlows.jl; which is continuously developed) to solve
differential equations and compute diagnostics, while pyqg can only be run on CPUs
and uses a self-contained kernel.

• Dedalus (Burns et al., 2020) (Python)
Dedalus is a Python package with an intuitive script-based interface that uses spectral
methods to solve general partial differential equations, such as the ones within Geoph
ysicalFlows.jl. Dedalus allows for more general boundary conditions in one of the
dimensions. It only runs on CPUs (not on GPUs) but can be MPI-parallelized.

• Oceananigans.jl (Ramadhan et al., 2020) (Julia)
Oceananigans.jl is a fluid solver focussed on the Navier-Stokes equations under the
Boussinesq approximation. Oceananigans.jl also runs on GPUs, and it allows for
more variety of boundary conditions but it does not have spectral accuracy as it uses
finite-volume discretization methods.

• MAOOAM (De Cruz et al., 2016) (Fortran, Python, and Lua) and its expanded Python
implementation qgs (Demaeyer et al., 2020)
MAOOAM and qgs simulate two atmospheric layers with QG dynamics, above either land
or an oceanic fluid layer with reduced-gravity QG dynamics. The dynamics of individual
layers have overlap with the MultiLayerQG and SingleLayerQG modules, however the
layer configuration of MOAAM and qgs is specifically designed to study the dynamics of
Earth’s mid-latitude atmosphere. Neither MAOOAM nor qgs can run on GPUs.
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• Isolated codes/scripts
Several codes/scripts exist in personal websites and in open-source public repositories
with similar functionality as some GeophysicalFlows.jl modules (e.g., TwoDNavier
Stokes or SingleLayerQG). Usually, though, these codes come without any or poor
documentation and typically they are not continuously tested.

GeophysicalFlows.jl can be used to investigate a variety of scientific research questions
thanks to its various modules and high customizability, and its ease-of-use makes it an ideal
teaching tool for fluids courses (Constantinou, 2020; Constantinou & Wagner, 2020). Geop
hysicalFlows.jl has been used in developing Lagrangian vortices identification algorithms
(Karrasch & Schilling, 2020) and to test new theories for diagnosing turbulent energy transfers
in geophysical flows (Pearson et al., 2021). Currently, GeophysicalFlows.jl is being used,
e.g., (i) to compare different observational sampling techniques in these flows, (ii) to study the
bifurcation properties of Kolmogorov flows (Constantinou & Drivas, 2020), (iii) to study the
genesis and persistence of the polygons of vortices present at Jovian high latitudes (Siegelman,
Young, and Ingersoll; in prep), and (iv) to study how mesoscale macroturbulence affects mixing
of tracers (Bisits & Constantinou, 2021).
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